69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-lactamases are the primary cause of resistance to β-lactams among members of the family Enterobacteriaceae. SHV enzymes have emerged in Enterobacteriaceae causing infections in health care in the last decades of the Twentieth century, and they are now observed in isolates in different epidemiological settings both in human, animal and the environment. Likely originated from a chromosomal penicillinase of Klebsiella pneumoniae, SHV β-lactamases currently encompass a large number of allelic variants including extended-spectrum β-lactamases (ESBL), non-ESBL and several not classified variants. SHV enzymes have evolved from a narrow- to an extended-spectrum of hydrolyzing activity, including monobactams and carbapenems, as a result of amino acid changes that altered the configuration around the active site of the β -lactamases. SHV-ESBLs are usually encoded by self-transmissible plasmids that frequently carry resistance genes to other drug classes and have become widespread throughout the world in several Enterobacteriaceae, emphasizing their clinical significance.

          Related collections

          Most cited references199

          • Record: found
          • Abstract: found
          • Article: not found

          Extended-Spectrum β-Lactamases: a Clinical Update

          Extended-spectrum β-lactamases (ESBLs) are a rapidly evolving group of β-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. This extends the spectrum of β-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli . In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Resistance plasmid families in Enterobacteriaceae.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmids and the spread of resistance.

              Plasmids represent one of the most difficult challenge for counteracting the dissemination of antimicrobial resistance. They contribute to the spread of relevant resistance determinants, promoting horizontal gene transfer among unrelated bacteria. Undistinguishable plasmids were identified in unrelated bacterial strains isolated at huge geographically distant area, with no apparent epidemiological links. These plasmids belong to families that are largely prevalent in naturally occurring bacteria, usually carry multiple physically linked genetic determinants, conferring resistance to different classes of antibiotics simultaneously. Plasmids also harbour virulence factors and addiction systems, promoting their stability and maintenance in the bacterial host, in different environmental conditions. The characteristics of the most successful plasmids that were at the origin of the spread of carbapenemase, expanded-spectrum β-lactamase, and plasmid-mediated quinolone resistance genes are discussed in this review. Copyright © 2013 Elsevier GmbH. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                05 September 2016
                2016
                : 7
                : 1374
                Affiliations
                [1] 1Department of Bacteriology and Epidemiology, Central Veterinary Institute of Wageningen UR Lelystad, Netherlands
                [2] 2Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
                Author notes

                Edited by: Axel Cloeckaert, French National Institute for Agricultural Research (INRA), France

                Reviewed by: Sebastian Guenther, Free University of Berlin, Germany; David Wareham, Queen Mary University of London, UK

                *Correspondence: Daniela Ceccarelli daniela.ceccarelli@ 123456wur.nl

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.01374
                5011133
                27656166
                0dcb7072-48a1-476f-8c8c-c14bda2549e9
                Copyright © 2016 Liakopoulos, Mevius and Ceccarelli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 July 2016
                : 19 August 2016
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 223, Pages: 27, Words: 21560
                Categories
                Microbiology
                Review

                Microbiology & Virology
                β-lactamase,esbl,blashv,shv-2,shv-5,shv-12,plasmid,enterobacteriaceae
                Microbiology & Virology
                β-lactamase, esbl, blashv, shv-2, shv-5, shv-12, plasmid, enterobacteriaceae

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content579

                Cited by71

                Most referenced authors2,270