1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The specific distribution pattern of IKZF1 mutation in acute myeloid leukemia

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IKZF1 belongs to the IKAROS family of transcription factors, and its deletion/mutation frequently affects acute lymphoblastic leukemia. In acute myeloid leukemia, IKZF1 deletion has been demonstrated recurrent, but whether IKZF1 mutation also exists in AML remained largely unknown. Herein, we analyzed the IKZF1 mutation in AML. In our cohort, the frequency of IKZF1 mutation was 2.6% (5/193), and 5 frameshift/nonsense mutations as well as 2 missense mutations were identified in total. Molecularly, IKZF1 mutation was absent in fusion gene-positive AML, but it was demonstrated as the significant concomitant genetic alteration with SF3B1 or bi-allele CEBPA mutation in AML. Clinically, two IKZF1, PTPN11 and SF3B1-mutated AML patients exhibited one aggressive clinical course and showed primary resistant to chemotherapy. Furthermore, we confirmed the recurrent IKZF1 mutation in AML with cBioPortal tool from OHSU, TCGA and TARGET studies. Interestingly, OHSU study also showed that SF3B1 mutation was the significant concomitant genetic alteration with IKZF1 mutation, indicating their strong synergy in leukemogenesis. In conclusion, IKZF1 mutation recurrently affected AML.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.

          Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional Genomic Landscape of Acute Myeloid Leukemia

            The implementation of targeted therapies for acute myeloid leukemia has been challenged by complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here, we report initial findings from the Beat AML program on a cohort of 672 tumor specimens collected from 562 patients. We assessed these specimens using whole exome sequencing, RNA-sequencing, and ex vivo drug sensitivity analyses. Our data reveal novel mutational events not previously detected in AML. We show association of drug response with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA-sequencing also revealed gene expression signatures, which predict a role of specific gene networks in drug response. Collectively, this report offers a dataset, accessible by the Beat AML data viewer (www.vizome.org), that can be leveraged to address clinical, genomic, transcriptomic, and functional inquiries into the biology of AML.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions

              We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children's Oncology Group (COG) AML trials. The COG-National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases. In contrast, somatic structural variants, including new gene fusions and focal deletions of MBNL1, ZEB2 and ELF1, were disproportionately prevalent in young individuals as compared to adults. Conversely, mutations in DNMT3A and TP53, which were common in adults, were conspicuously absent from virtually all pediatric cases. New mutations in GATA2, FLT3 and CBL and recurrent mutations in MYC-ITD, NRAS, KRAS and WT1 were frequent in pediatric AML. Deletions, mutations and promoter DNA hypermethylation convergently impacted Wnt signaling, Polycomb repression, innate immune cell interactions and a cluster of zinc finger-encoding genes associated with KMT2A rearrangements. These results highlight the need for and facilitate the development of age-tailored targeted therapies for the treatment of pediatric AML.
                Bookmark

                Author and article information

                Contributors
                jiej0503@zju.edu.cn
                drwjyu1977@zju.edu.cn
                Journal
                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                1756-8722
                20 October 2020
                20 October 2020
                2020
                : 13
                : 140
                Affiliations
                [1 ]GRID grid.13402.34, ISNI 0000 0004 1759 700X, Department of Hematology, The First Affiliated Hospital, , Zhejiang University School of Medicine, ; #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003 China
                [2 ]Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang China
                Author information
                http://orcid.org/0000-0002-7543-8352
                Article
                972
                10.1186/s13045-020-00972-5
                7574539
                33081843
                0dca9a76-f19f-40f6-b68c-a2cb073271b7
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 3 September 2020
                : 29 September 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81800199
                Award ID: 81670124
                Award Recipient :
                Categories
                Letter to the Editor
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                ikzf1 mutation,acute myeloid leukemia,recurrence
                Oncology & Radiotherapy
                ikzf1 mutation, acute myeloid leukemia, recurrence

                Comments

                Comment on this article