12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An inducible genome editing system for plants

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Scaling accurate genetic variant discovery to tens of thousands of samples

          Comprehensive disease gene discovery in both common and rare diseases will require the efficient and accurate detection of all classes of genetic variation across tens to hundreds of thousands of human samples. We describe here a novel assembly-based approach to variant calling, the GATK HaplotypeCaller (HC) and Reference Confidence Model (RCM), that determines genotype likelihoods independently per-sample but performs joint calling across all samples within a project simultaneously. We show by calling over 90,000 samples from the Exome Aggregation Consortium (ExAC) that, in contrast to other algorithms, the HC-RCM scales efficiently to very large sample sizes without loss in accuracy; and that the accuracy of indel variant calling is superior in comparison to other algorithms. More importantly, the HC-RCM produces a fully squared-off matrix of genotypes across all samples at every genomic position being investigated. The HC- RCM is a novel, scalable, assembly-based algorithm with abundant applications for population genetics and clinical studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche.

            A small organizing center, the quiescent center (QC), maintains stem cells in the Arabidopsis root and defines the stem cell niche. The phytohormone auxin influences the position of this niche by an unknown mechanism. Here, we identify the PLETHORA1 (PLT1) and PLT2 genes encoding AP2 class putative transcription factors, which are essential for QC specification and stem cell activity. The PLT genes are transcribed in response to auxin accumulation and are dependent on auxin response transcription factors. Distal PLT transcript accumulation creates an overlap with the radial expression domains of SHORT-ROOT and SCARECROW, providing positional information for the stem cell niche. Furthermore, the PLT genes are activated in the basal embryo region that gives rise to hypocotyl, root, and root stem cells and, when ectopically expressed, transform apical regions to these identities. Thus, the PLT genes are key effectors for establishment of the stem cell niche during embryonic pattern formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development.

              Factors with a graded distribution can program fields of cells in a dose-dependent manner, but no evidence has hitherto surfaced for such mechanisms in plants. In the Arabidopsis thaliana root, two PLETHORA (PLT) genes encoding AP2-domain transcription factors have been shown to maintain the activity of stem cells. Here we show that a clade of four PLT homologues is necessary for root formation. Promoter activity and protein fusions of PLT homologues display gradient distributions with maxima in the stem cell area. PLT activities are largely additive and dosage dependent. High levels of PLT activity promote stem cell identity and maintenance; lower levels promote mitotic activity of stem cell daughters; and further reduction in levels is required for cell differentiation. Our findings indicate that PLT protein dosage is translated into distinct cellular responses.
                Bookmark

                Author and article information

                Journal
                Nature Plants
                Nat. Plants
                Springer Science and Business Media LLC
                2055-0278
                June 29 2020
                Article
                10.1038/s41477-020-0695-2
                32601420
                0db84e30-8d5f-4d30-af0e-3a67621a34f2
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article