1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review

      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reduction of greenhouse gas emissions and strengthening the security of electric energy have gained enormous momentum recently. Integrating intermittent renewable energy sources (RESs) such as PV and wind into the existing grid has increased significantly in the last decade. However, this integration hampers the reliable and stable operation of the grid by posing many operational and control challenges. Generation uncertainty, voltage and angular stability, power quality issues, reactive power support and fault ride-through capability are some of the various challenges. The power generated from RESs fluctuates due to unpredictable weather conditions such as wind speed and sunshine. Energy storage systems (ESSs) play a vital role in mitigating the fluctuation by storing the excess generated power and then making it accessible on demand. This paper presents a review of energy storage systems covering several aspects including their main applications for grid integration, the type of storage technology and the power converters used to operate some of the energy storage technologies. This comprehensive review of energy storage systems will guide power utilities; the researchers select the best and the most recent energy storage device based on their effectiveness and economic feasibility.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: not found
          • Article: not found

          Progress in electrical energy storage system: A critical review

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Overview of current development in electrical energy storage technologies and the application potential in power system operation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage

              Large scale storage technologies are vital to increase the share of renewable electricity in the global energy mix. Increased interest in electrical energy storage is in large part driven by the explosive growth in intermittent renewable sources such as wind and solar as well as the global drive towards decarbonizing the energy economy. However, the existing electrical grid systems in place globally are not equipped to handle mass scale integration of intermittent energy sources without serious disruptions to the grid. It is generally agreed that more than 20% penetration from intermittent renewables can greatly destabilize the grid system. Certainly, large-scale electrical energy storage systems may alleviate many of the inherent inefficiencies and deficiencies in the grid system, and help improve grid reliability, facilitate full integration of intermittent renewable sources, and effectively manage power generation. Electrical energy storage offers two other important advantages. First, it decouples electricity generation from the load or electricity user, thus making it easier to regulate supply and demand. Second, it allows distributed storage opportunities for local grids, or microgrids, which greatly improve grid security, and hence, energy security. Currently, there is only 170 GW of installed storage capacity around the world, but more than 96% is provided by pumped-hydro, which is site-constrained and not available widely. Hence, a battery of technologies is needed to fully address the widely varying needs for large-scale electrical storage. The focus of this article is to provide a comprehensive review of a broad portfolio of electrical energy storage technologies, materials and systems, and present recent advances and progress as well as challenges yet to overcome. The article discusses the status and options for mechanical, thermal, electrochemical, and chemical storage. Where appropriate, it also provides tutorial level background information on fundamental principles for the interested non-expert. It is hoped that this article is of interest to the uninitiated as well as active scientists and engineers engaged in energy storage technologies, with particular focus on large-scale electrical energy storage.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                May 2022
                May 15 2022
                : 14
                : 10
                : 5985
                Article
                10.3390/su14105985
                0dab72d1-82b5-4850-a560-bd4ee25eb961
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article