32
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stereoselective glucuronidation of 5-(4'-hydroxyphenyl)-5-phenylhydantoin by human UDP-glucuronosyltransferase (UGT) 1A1, UGT1A9, and UGT2B15: effects of UGT-UGT interactions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          5-(4'-Hydroxyphenyl)-5-phenylhydantoin (4'-HPPH), a major metabolite of phenytoin in human, is exclusively metabolized to a glucuronide. 4'-HPPH has a chiral center. (S)-4'-HPPH is a predominant form produced from phenytoin in humans, and (R)-4'-HPPH is an extremely toxic form with respect to gingival hyperplasia. In the present study, we investigated stereoselective 4'-HPPH O-glucuronide formation in human liver microsomes. Human liver microsomes predominantly formed (S)-4'-HPPH O-glucuronide rather than (R)-4'-HPPH O-glucuronide from racemic 4'-HPPH. Among human UDP-glucuronosyltransferase (UGT) enzymes, UGT1A1, UGT1A9, and UGT2B15 showed 4'-HPPH O-glucuronide formation. Interestingly, UGT1A1 stereoselectively formed (R)-4'-HPPH O-glucuronide, whereas UGT1A9 and UGT2B15 stereoselectively formed (S)-4'-HPPH O-glucuronide from racemic 4'-HPPH. By using UGT1A double-expression systems in HEK293 cells that we previously established, the effects of UGT-UGT interactions on 4'-HPPH O-glucuronide formation were investigated. It was demonstrated that coexpression of UGT1A4 increased the V(max) values of (S)- and (R)-4'-HPPH O-glucuronide formation catalyzed by UGT1A1 but decreased the V(max) values of (S)- and (R)-4'-HPPH O-glucuronide formation catalyzed by UGT1A9. Coexpression of UGT1A6 increased the S(50) values and decreased the V(max) values of (S)- and (R)-4'-HPPH glucuronide formation catalyzed by UGT1A1 and UGT1A9. However, the interaction did not alter the stereoselectivity. In conclusion, we found that 4'-HPPH O-glucuronide formation in human liver microsomes is catalyzed by UGT1A1, UGT1A9, and UGT2B15 in a stereoselective manner, being modulated by interaction with other UGT1A isoforms.

          Related collections

          Author and article information

          Journal
          Drug Metab. Dispos.
          Drug metabolism and disposition: the biological fate of chemicals
          American Society for Pharmacology & Experimental Therapeutics (ASPET)
          0090-9556
          0090-9556
          Sep 2007
          : 35
          : 9
          Affiliations
          [1 ] Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
          Article
          dmd.107.015909
          10.1124/dmd.107.015909
          17576806
          0da4817f-1d9c-445d-a5ff-7f36b2d5d66d
          History

          Comments

          Comment on this article