Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.
Neurons encode information with brief electrical pulses called spikes. Monitoring spikes in large populations of neurons is a powerful method for studying how networks of neurons process information and produce behavior. This activity can be detected using fluorescent protein indicators, or “probes”, which light up when neurons are active.
The best existing probes produce green fluorescence. However, red fluorescent probes would allow us to see deeper into the brain, and could also be used with green probes to image the activity and interactions of different neuron types simultaneously. However, existing red fluorescent probes are not as good at detecting neural activity as green probes.
By optimizing two existing red fluorescent proteins, Dana et al. have now produced two new red fluorescent probes, each with different advantages. The new protein indicators detect neural activity with high sensitivity and allow researchers to image previously unseen brain activity. Tests showed that the probes work in cultured neurons and allow imaging of the activity of neurons in mice, flies, fish and worms.
History has shown that enhancing the techniques used to study biological processes can lead to fundamentally new insights. In the future, Dana et al. would therefore like to make even more sensitive protein indicators that will allow larger networks of neurons deeper in the brain to be imaged.