8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plump endothelial cells integrated into pre-existing venules contribute to the formation of ‘mother’ and ‘daughter’ vessels in pyogenic granuloma: possible role of galectin-1, -3 and -8

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction:

          Pyogenic granuloma (PG) is a reactive inflammatory vascular lesion of the skin and mucous membranes, characterised by the presence of enlarged venules and seamed and seamless capillaries with plump endothelial cells (EC), and numerous macrophages. EC activation upregulates the synthesis of galectins and induces their translocation to the EC surface promoting angiogenesis and lymphangiogenesis, particularly galectin-1 (Gal-1), Gal-3 and Gal-8. However, the presence and distribution of Gal-1, -3 and -8, as well as their implications in the pathogenesis of PG, has not been considered.

          Materials and methods:

          Eight biopsies from patients diagnosed with PG were selected. The presence of PECAM-1/CD31, IL-1β, VEGF-C, VEGFR-2, VEGFR-3, integrin β1, CD44, fibronectin and Gal-1, -3 and -8 was assessed by immunofluorescence staining using confocal laser scanning microscopy.

          Results and Discussion:

          Immunostaining revealed that these molecules were present in the enlarged venules with plump ECs, in some macrophages and other immune cells. We propose that macrophages release VEGF-A and VEGF-C inducing VEGFR-2/VEGFR-3 expression and activation, leading macrophages to transdifferentiate into plump ECs that might integrate into pre-existing venules, contributing to the formation of enlarged venules with transluminal bridges and capillaries. EC activation, induced by certain cytokines, has been shown to stimulate galectin expression and changes in the cellular localisation through association and activation of specific EC surface glycoproteins. Therefore, it is plausible that Gal-1, -3 and -8, acting in a concerted manner, could be mediating the transdifferentiation of macrophages into plump ECs and facilitating their migration and incorporation into the new vessels.

          Lay Summary

          In this study, immunostaining of pyogenic granuloma (PG) tissue sections showed immunoreactivity for PECAM-1/CD31, IL-1β, VEGF-C, VEGFR-2 and VEGFR-3, and galectin-1, -3 and -8 in enlarged venules with plump endothelial cells (EC), as well as in some macrophages and other immune cells. Interestingly, enlarged and thin-walled transient vessels lined by PECAM-1/CD31 and VEGFR-2 immunopositive ECs that form from pre-existing normal venules in response to VEGF-A (called ‘mother’ vessels [MV]) and that undergo intraluminal bridging evolving into various types of capillaries (called ‘daughter’ vessels [DV]) have been observed in benign and malignant tumours, in physiological and pathological angiogenesis as well as in vascular malformations, suggesting an important role for VEGF-A and VEGFR-2 in such a process. However, it is not only the mechanisms by which the MVs evolve in different types of DVs that remains to be elucidated, but also whether the cells that form intraluminal bridges proceed from locally activated ECs or whether they are derived from bone marrow precursors or from resident macrophages.

          Given that the formation of homodimers by Gal-1 and Gal-8 and pentamers by Gal-3 to generate gal–glycan lattices at the cell surface and in the extracellular space has been shown, it is possible that in PG tissue Gal-1, -3 and -8, through their binding partners, form a supramolecular structure at the surface of ECs and plump ECs, macrophages and in the extracellular space that might be mediating the transdifferentiation of macrophages into plump ECs and facilitating the migration and incorporation of these cells into the pre-existing venules, thus contributing to the formation of MVs and DVs.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          CD44: from adhesion molecules to signalling regulators.

          Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes--not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Proinflammatory cytokines.

            To review the concept of proinflammatory cytokines. Review of published literature. Academic (university hospital). Cytokines are regulators of host responses to infection, immune responses, inflammation, and trauma. Some cytokines act to make disease worse (proinflammatory), whereas others serve to reduce inflammation and promote healing (anti-inflammatory). Attention also has focused on blocking cytokines, which are harmful to the host, particularly during overwhelming infection. Interleukin (IL)-1 and tumor necrosis factor (TNF) are proinflammatory cytokines, and when they are administered to humans, they produce fever, inflammation, tissue destruction, and, in some cases, shock and death. Reducing the biological activities of IL-1 and TNF is accomplished by several different, but highly specific, strategies, which involve neutralizing antibodies, soluble receptors, receptor antagonist, and inhibitors of proteases that convert inactive precursors to active, mature molecules. Blocking IL-1 or TNF has been highly successful in patients with rheumatoid arthritis, inflammatory bowel disease, or graft-vs-host disease but distinctly has not been successful in humans with sepsis. Agents such as TNF-neutralizing antibodies, soluble TNF receptors, and IL-1 receptor antagonist have been infused into > 10,000 patients in double-blind, placebo-controlled trials. Although there has been a highly consistent small increase (2 to 3%) in 28-day survival rates with anticytokine therapy, the effect has not been statistically significant. Anticytokine therapy should be able to "rescue" the patient whose condition continues to deteriorate in the face of considerable support efforts. Unfortunately, it remains difficult to identify those patients who would benefit from anticytokine therapy for septic shock.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia

              Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.
                Bookmark

                Author and article information

                Journal
                Scars Burn Heal
                Scars Burn Heal
                SBH
                spsbh
                Scars, Burns & Healing
                SAGE Publications (Sage UK: London, England )
                2059-5131
                22 January 2021
                Jan-Dec 2021
                : 7
                : 2059513120986687
                Affiliations
                [1 ]Institute of Biomedicine, Central University of Venezuela, Caracas, Venezuela
                [2 ]Autonomus Service Institute of Biomedicine, Caracas, Venezuela
                [3 ]Institute of Immunology, Central University of Venezuela, Caracas, Venezuela
                [4 ]Institute of Anatomy and Pathology, Central University of Venezuela, Caracas, Venezuela
                Author notes
                [*]Enrique Arciniegas, Instituto de Biomedicina, Universidad Central de Venezuela, Esquina de San Nicolas a Esquina de Providencia, San Jose, Distrito Capital, Caracas 1010, República Bolivariana de Venezuela. Email: earciniegasbeta@ 123456yahoo.com
                Author information
                https://orcid.org/0000-0001-6371-1561
                Article
                10.1177_2059513120986687
                10.1177/2059513120986687
                7841855
                0d7b67bf-cc8f-47a9-a8ac-bb66c5693fee
                © The Author(s) 2021

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                Categories
                Original Article
                Custom metadata
                January-December 2021
                ts1

                pyogenic granuloma,plump endothelial cell,macrophage,venules,galectins,gal–glycan lattice

                Comments

                Comment on this article