8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cereal Endosperms: Development and Storage Product Accumulation

      1 , 1 , 1 , 2 , 3 , 4
      Annual Review of Plant Biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.

          Related collections

          Most cited references211

          • Record: found
          • Abstract: not found
          • Article: not found

          Dynamics and function of DNA methylation in plants

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pentatricopeptide repeat proteins in plants.

            Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increasing homogeneity in global food supplies and the implications for food security.

              The narrowing of diversity in crop species contributing to the world's food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security.
                Bookmark

                Author and article information

                Journal
                Annual Review of Plant Biology
                Annu. Rev. Plant Biol.
                Annual Reviews
                1543-5008
                1545-2123
                May 20 2022
                May 20 2022
                : 73
                : 1
                : 255-291
                Affiliations
                [1 ]Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
                [2 ]Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
                [3 ]Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
                [4 ]School of Advanced Agricultural Sciences, Peking University, Beijing, China
                Article
                10.1146/annurev-arplant-070221-024405
                35226815
                0d567956-d79e-49e5-98ba-0f15035ef682
                © 2022
                History

                Comments

                Comment on this article