Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Secretome from mesenchymal stem cells induces angiogenesis via Cyr61.

      Journal of Cellular Physiology
      Animals, Cells, Cultured, Collagen, Culture Media, Conditioned, Cysteine-Rich Protein 61, administration & dosage, pharmacology, physiology, secretion, Drug Combinations, Endothelial Cells, cytology, drug effects, Humans, Laminin, Male, Mesenchymal Stromal Cells, Mice, Mice, Inbred C57BL, Mice, Nude, Neovascularization, Physiologic, Proteoglycans, Recombinant Proteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well known that bone marrow-derived mesenchymal stem cells (MSCs) are involved in wound healing and regeneration responses. In this study, we globally profiled the proteome of MSCs to investigate critical factor(s) that may promote wound healing. Cysteine-rich protein 61 (Cyr61) was found to be abundantly present in MSCs. The presence of Cyr61 was confirmed by immunofluorescence staining and immunoblot analysis. Moreover, we showed that Cyr61 is present in the culture medium (secretome) of MSCs. The secretome of MSCs stimulates angiogenic response in vitro, and neovascularization in vivo. Depletion of Cyr61 completely abrogates the angiogenic-inducing capability of the MSC secretome. Importantly, addition of recombinant Cyr61 polypeptides restores the angiogenic activity of Cyr61-depleted secretome. Collectively, these data demonstrate that Cyr61 polypeptide in MSC secretome contributes to the angiogenesis-promoting activity, a key event needed for regeneration and repair of injured tissues. J. Cell. Physiol. 219: 563-571, 2009. (c) 2009 Wiley-Liss, Inc.

          Related collections

          Author and article information

          Comments

          Comment on this article