15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      miRNAs as cornerstones in diabetic microvascular complications

      , , ,
      Molecular Genetics and Metabolism
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

          MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders.

            Retinal ischemia induces intraocular neovascularization, which often leads to glaucoma, vitreous hemorrhage, and retinal detachment, presumably by stimulating the release of angiogenic molecules. Vascular endothelial growth factor (VEGF) is an endothelial-cell-specific angiogenic factor whose production is increased by hypoxia. We measured the concentration of VEGF in 210 specimens of ocular fluid obtained from 164 patients undergoing intraocular surgery, using both radioimmuno-assays and radioreceptor assays. Vitreous proliferative potential was measured with in vitro assays of the growth of retinal endothelial cells and with VEGF-neutralizing antibody. VEGF was detected in 69 of 136 ocular-fluid samples from patients with diabetic retinopathy, 29 of 38 samples from patients with neovascularization of the iris, and 3 of 4 samples from patients with ischemic occlusion of the central retinal vein, as compared with 2 of 31 samples from patients with no neovascular disorders (P < 0.001, P < 0.001, and P = 0.006, respectively). The mean (+/- SD) VEGF concentration in 70 samples of ocular fluid from patients with active proliferative diabetic retinopathy (3.6 +/- 6.3 ng per milliliter) was higher than that in 25 samples from patients with nonproliferative diabetic retinopathy (0.1 +/- 0.1 ng per milliliter, P = 0.008), 41 samples from patients with quiescent proliferative diabetic retinopathy (0.2 +/- 0.6 ng per milliliter, P < 0.001), or 31 samples from nondiabetic patients (0.1 +/- 0.2 ng per milliliter, P = 0.003). Concentrations of VEGF in vitreous fluid (8.8 +/- 9.9 ng per milliliter) were higher than those in aqueous fluid (5.6 +/- 8.6 ng per milliliter, P = 0.033) in all 10 pairs of samples obtained simultaneously from the same patient; VEGF concentrations in vitreous fluid declined after successful laser photocoagulation. VEGF stimulated the growth of retinal endothelial cells in vitro, as did vitreous fluid containing measurable VEGF. Stimulation was inhibited by VEGF-neutralizing antibodies. Our data suggest that VEGF plays a major part in mediating active intraocular neovascularization in patients with ischemic retinal diseases, such as diabetic retinopathy and retinal-vein occlusion.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021

                Bookmark

                Author and article information

                Journal
                Molecular Genetics and Metabolism
                Molecular Genetics and Metabolism
                Elsevier BV
                10967192
                January 2023
                January 2023
                : 138
                : 1
                : 106978
                Article
                10.1016/j.ymgme.2022.106978
                36565688
                0d175138-c6a5-4c7c-8c51-56c01c5db507
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article