79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Lung infections associated with cystic fibrosis.

          While originally characterized as a collection of related syndromes, cystic fibrosis (CF) is now recognized as a single disease whose diverse symptoms stem from the wide tissue distribution of the gene product that is defective in CF, the ion channel and regulator, cystic fibrosis transmembrane conductance regulator (CFTR). Defective CFTR protein impacts the function of the pancreas and alters the consistency of mucosal secretions. The latter of these effects probably plays an important role in the defective resistance of CF patients to many pathogens. As the modalities of CF research have changed over the decades from empirical histological studies to include biophysical measurements of CFTR function, the clinical management of this disease has similarly evolved to effectively address the ever-changing spectrum of CF-related infectious diseases. These factors have led to the successful management of many CF-related infections with the notable exception of chronic lung infection with the gram-negative bacterium Pseudomonas aeruginosa. The virulence of P. aeruginosa stems from multiple bacterial attributes, including antibiotic resistance, the ability to utilize quorum-sensing signals to form biofilms, the destructive potential of a multitude of its microbial toxins, and the ability to acquire a mucoid phenotype, which renders this microbe resistant to both the innate and acquired immunologic defenses of the host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TPR proteins: the versatile helix.

            Tetratrico peptide repeat (TPR) proteins have several interesting properties, including their folding characteristics, modular architecture and range of binding specificities. In the past five years, many 3D structures of TPR domains have been solved, revealing at a molecular level the versatility of this basic fold. Here, we discuss the structure of TPRs and highlight the diversity of arrangements and functions that are associated with these ubiquitous domains. Genomic analyses of the distribution of TPR domains are presented along with implications for protein engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

              Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Research Foundation
                1664-302X
                31 May 2011
                22 August 2011
                2011
                : 2
                : 167
                Affiliations
                [1] 1simpleDepartment of Microbiology, Montana State University Bozeman, MT, USA
                [2] 2simpleCenter for Biofilm Engineering, Montana State University Bozeman, MT, USA
                [3] 3simpleDepartment of Food Science, Purdue University West Lafayette, IN, USA
                [4] 4simpleProgram in Molecular Structure and Function, The Hospital for Sick Children Toronto, ON, Canada
                [5] 5simpleDepartment of Biochemistry, University of Toronto Toronto, ON, Canada
                Author notes

                Edited by: Dara Frank, Medical College of Wisconsin, USA

                Reviewed by: Daniel Wozniak, The Ohio State University, USA; Chris Whitfield, University of Guelph, Canada

                *Correspondence: Michael J. Franklin, Department of Microbiology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA. e-mail: franklin@ 123456montana.edu ; P. Lynne Howell, Molecular Structure and Function, The Hospital for Sick Children, 555 University, 16 Avenue, Toronto, ON, Canada M5G 1X8. e-mail: howell@ 123456sickkids.ca

                This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2011.00167
                3159412
                21991261
                0d0632f5-5d31-49ff-a531-20c01cf3973d
                Copyright © 2011 Franklin, Nivens, Weadge and Howell.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 15 April 2011
                : 19 July 2011
                Page count
                Figures: 7, Tables: 3, Equations: 1, References: 111, Pages: 16, Words: 13772
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                glycosyltransferase,psl polysaccharide,pel polysaccharide,rossmann fold,pseudomonas aeruginosa,alginate

                Comments

                Comment on this article