4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Updates on Coronavirus Disease 2019 in Children in Japan

      review-article
      , MD, PhD * , , , MD, PhD , , MD, PhD
      The Pediatric Infectious Disease Journal
      Lippincott Williams & Wilkins
      children, coronavirus disease 2019, Japan, neonates

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review provides updates on coronavirus disease 2019 (COVID-19) in children in Japan by summarizing published data. By the end of March 2022, Japan had experienced 6 waves of COVID-19 outbreaks. Over this time, the clinical features presented among children have changed in the context of the predominant variants. Although the COVID-19 pandemic affected children in terms of medical, physical and psychosocial aspects, the clinical outcomes have been favorable in Japan compared with those in some European countries and the United States, which may be partly due to a lower incidence of multisystem inflammatory syndromes in children and obesity. The COVID-19 vaccine has been available for children; however, the vaccination rate in children 5–11 years of age is lower than that in older children due to the government’s lack of an active approach in this specific population. Further action is needed to improve the overall vaccination rates in children.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

          Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013.

            In 2010, overweight and obesity were estimated to cause 3·4 million deaths, 3·9% of years of life lost, and 3·8% of disability-adjusted life-years (DALYs) worldwide. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparable, up-to-date information about levels and trends is essential to quantify population health effects and to prompt decision makers to prioritise action. We estimate the global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013. We systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports. We used mixed effects linear regression to correct for bias in self-reports. We obtained data for prevalence of obesity and overweight by age, sex, country, and year (n=19,244) with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Worldwide, the proportion of adults with a body-mass index (BMI) of 25 kg/m(2) or greater increased between 1980 and 2013 from 28·8% (95% UI 28·4-29·3) to 36·9% (36·3-37·4) in men, and from 29·8% (29·3-30·2) to 38·0% (37·5-38·5) in women. Prevalence has increased substantially in children and adolescents in developed countries; 23·8% (22·9-24·7) of boys and 22·6% (21·7-23·6) of girls were overweight or obese in 2013. The prevalence of overweight and obesity has also increased in children and adolescents in developing countries, from 8·1% (7·7-8·6) to 12·9% (12·3-13·5) in 2013 for boys and from 8·4% (8·1-8·8) to 13·4% (13·0-13·9) in girls. In adults, estimated prevalence of obesity exceeded 50% in men in Tonga and in women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has slowed down. Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Not only is obesity increasing, but no national success stories have been reported in the past 33 years. Urgent global action and leadership is needed to help countries to more effectively intervene. Bill & Melinda Gates Foundation. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of large-scale anti-contagion policies on the COVID-19 pandemic

              Governments around the world are responding to the coronavirus disease 2019 (COVID-19) pandemic1, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with unprecedented policies designed to slow the growth rate of infections. Many policies, such as closing schools and restricting populations to their homes, impose large and visible costs on society; however, their benefits cannot be directly observed and are currently understood only through process-based simulations2-4. Here we compile data on 1,700 local, regional and national non-pharmaceutical interventions that were deployed in the ongoing pandemic across localities in China, South Korea, Italy, Iran, France and the United States. We then apply reduced-form econometric methods, commonly used to measure the effect of policies on economic growth5,6, to empirically evaluate the effect that these anti-contagion policies have had on the growth rate of infections. In the absence of policy actions, we estimate that early infections of COVID-19 exhibit exponential growth rates of approximately 38% per day. We find that anti-contagion policies have significantly and substantially slowed this growth. Some policies have different effects on different populations, but we obtain consistent evidence that the policy packages that were deployed to reduce the rate of transmission achieved large, beneficial and measurable health outcomes. We estimate that across these 6 countries, interventions prevented or delayed on the order of 61 million confirmed cases, corresponding to averting approximately 495 million total infections. These findings may help to inform decisions regarding whether or when these policies should be deployed, intensified or lifted, and they can support policy-making in the more than 180 other countries in which COVID-19 has been reported7.
                Bookmark

                Author and article information

                Contributors
                Journal
                Pediatr Infect Dis J
                Pediatr Infect Dis J
                INF
                The Pediatric Infectious Disease Journal
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0891-3668
                1532-0987
                18 July 2022
                November 2022
                18 July 2022
                : 41
                : 11
                : e461-e467
                Affiliations
                From the [* ]Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
                []Immunization Group, Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases
                []Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan.
                Author notes
                Address for correspondence: Yuta Aizawa, MD, PhD, Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan. E-mail: yaizawa@ 123456med.niigata-u.ac.jp .
                Author information
                https://orcid.org/0000-0003-0617-6456
                Article
                00014
                10.1097/INF.0000000000003641
                9555575
                35895890
                0ceb5ee1-44e4-4a7e-8ae5-d8506d18fa9a
                Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 24 June 2022
                Categories
                Review Articles
                Custom metadata
                ONLINE-ONLY
                T

                children,coronavirus disease 2019,japan,neonates
                children, coronavirus disease 2019, japan, neonates

                Comments

                Comment on this article