15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides

      research-article
      1 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods.

          Low-temperature oxidation of CO, perhaps the most extensively studied reaction in the history of heterogeneous catalysis, is becoming increasingly important in the context of cleaning air and lowering automotive emissions. Hopcalite catalysts (mixtures of manganese and copper oxides) were originally developed for purifying air in submarines, but they are not especially active at ambient temperatures and are also deactivated by the presence of moisture. Noble metal catalysts, on the other hand, are water tolerant but usually require temperatures above 100 degrees C for efficient operation. Gold exhibits high activity at low temperatures and superior stability under moisture, but only when deposited in nanoparticulate form on base transition-metal oxides. The development of active and stable catalysts without noble metals for low-temperature CO oxidation under an ambient atmosphere remains a significant challenge. Here we report that tricobalt tetraoxide nanorods not only catalyse CO oxidation at temperatures as low as -77 degrees C but also remain stable in a moist stream of normal feed gas. High-resolution transmission electron microscopy demonstrates that the Co(3)O(4) nanorods predominantly expose their {110} planes, favouring the presence of active Co(3+) species at the surface. Kinetic analyses reveal that the turnover frequency associated with individual Co(3+) sites on the nanorods is similar to that of the conventional nanoparticles of this material, indicating that the significantly higher reaction rate that we have obtained with a nanorod morphology is probably due to the surface richness of active Co(3+) sites. These results show the importance of morphology control in the preparation of base transition-metal oxides as highly efficient oxidation catalysts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.

            The synthesis of highly crystalline and monodisperse gamma-Fe(2)O(3) nanocrystallites is reported. High-temperature (300 degrees C) aging of iron-oleic acid metal complex, which was prepared by the thermal decomposition of iron pentacarbonyl in the presence of oleic acid at 100 degrees C, was found to generate monodisperse iron nanoparticles. The resulting iron nanoparticles were transformed to monodisperse gamma-Fe(2)O(3) nanocrystallites by controlled oxidation by using trimethylamine oxide as a mild oxidant. Particle size can be varied from 4 to 16 nm by controlling the experimental parameters. Transmission electron microscopic images of the particles showed 2-dimensional and 3-dimensional assembly of particles, demonstrating the uniformity of these nanoparticles. Electron diffraction, X-ray diffraction, and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the gamma-Fe(2)O(3) structures. Monodisperse gamma-Fe(2)O(3) nanocrystallites with a particle size of 13 nm also can be generated from the direct oxidation of iron pentacarbonyl in the presence of oleic acid with trimethylamine oxide as an oxidant.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis.

              Nanostructured metal (Fe, Co, Mn, Cr, Mo) oxides were fabricated under microwave irradiation conditions in pure water without using any reducing or capping reagent. The metal oxides self-assembled into octahedra, spheres, triangular rods, pine, and hexagonal snowflake-like three-dimensional morphologies. Pine-structured nano-iron oxides were studied as a novel support for various catalytic organic transformations.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                05 May 2015
                2015
                : 5
                : 9733
                Affiliations
                [1 ]Nanocatalysis Laboratory (NanoCat), Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR) , Mumbai, India
                Author notes
                Article
                srep09733
                10.1038/srep09733
                4419518
                25939969
                0c9f5f4d-0a6b-40ab-9e94-f0ab71b52cb3
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 17 November 2014
                : 10 March 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article