4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements

      , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes.

          Over the past few years, pharmaceuticals are considered as an emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Advanced oxidation processes (AOPs) are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end-products. The environmental applications of AOPs are numerous, including water and wastewater treatment (i.e. removal of organic and inorganic pollutants and pathogens), air pollution abatement and soil remediation. AOPs are applied for the abatement of pollution caused by the presence of residual pharmaceuticals in waters for the last decade. In this light, this paper reviews and assesses the effectiveness of various AOPs for pharmaceutical removal from aqueous systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effluent from drug manufactures contains extremely high levels of pharmaceuticals.

            It is generally accepted that the main route for human pharmaceuticals to the aquatic environment is via sewage treatment plants receiving wastewater from households and hospitals. We have analysed pharmaceuticals in the effluent from a wastewater treatment plant serving about 90 bulk drug manufacturers in Patancheru, near Hyderabad, India--a major production site of generic drugs for the world market. The samples contained by far the highest levels of pharmaceuticals reported in any effluent. The high levels of several broad-spectrum antibiotics raise concerns about resistance development. The concentration of the most abundant drug, ciprofloxacin (up to 31,000 microg/L) exceeds levels toxic to some bacteria by over 1000-fold. The results from the present study call for an increased focus on the potential release of active pharmaceutical ingredients from production facilities in different regions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Degradation and removal methods of antibiotics from aqueous matrices--a review.

              Over the past few years, antibiotics have been considered emerging pollutants due to their continuous input and persistence in the aquatic ecosystem even at low concentrations. They have been detected worldwide in environmental matrices, indicating their ineffective removal from water and wastewater using conventional treatment methods. To prevent this contamination, several processes to degrade/remove antibiotics have been studied. This review addresses the current state of knowledge concerning the input sources, occurrence and mainly the degradation and removal processes applied to a specific class of micropollutants, the antibiotics. In this paper, different remediation techniques were evaluated and compared, such as conventional techniques (biological processes, filtration, coagulation, flocculation and sedimentation), advanced oxidation processes (AOPs), adsorption, membrane processes and combined methods. In this study, it was found that ozonation, Fenton/photo-Fenton and semiconductor photocatalysis were the most tested methodologies. Combined processes seem to be the best solution for the treatment of effluents containing antibiotics, especially those using renewable energy and by-products materials. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                September 2022
                September 2022
                : 838
                : 156010
                Article
                10.1016/j.scitotenv.2022.156010
                35595150
                0c746e9f-1745-46ce-9616-d321fb713be9
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article