10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/ β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/ β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/ β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/ β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/ β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities.

          The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/β-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic Kidney Disease.

            The definition and classification of chronic kidney disease (CKD) have evolved over time, but current international guidelines define this condition as decreased kidney function shown by glomerular filtration rate (GFR) of less than 60 mL/min per 1·73 m(2), or markers of kidney damage, or both, of at least 3 months duration, regardless of the underlying cause. Diabetes and hypertension are the main causes of CKD in all high-income and middle-income countries, and also in many low-income countries. Incidence, prevalence, and progression of CKD also vary within countries by ethnicity and social determinants of health, possibly through epigenetic influence. Many people are asymptomatic or have non-specific symptoms such as lethargy, itch, or loss of appetite. Diagnosis is commonly made after chance findings from screening tests (urinary dipstick or blood tests), or when symptoms become severe. The best available indicator of overall kidney function is GFR, which is measured either via exogenous markers (eg, DTPA, iohexol), or estimated using equations. Presence of proteinuria is associated with increased risk of progression of CKD and death. Kidney biopsy samples can show definitive evidence of CKD, through common changes such as glomerular sclerosis, tubular atrophy, and interstitial fibrosis. Complications include anaemia due to reduced production of erythropoietin by the kidney; reduced red blood cell survival and iron deficiency; and mineral bone disease caused by disturbed vitamin D, calcium, and phosphate metabolism. People with CKD are five to ten times more likely to die prematurely than they are to progress to end stage kidney disease. This increased risk of death rises exponentially as kidney function worsens and is largely attributable to death from cardiovascular disease, although cancer incidence and mortality are also increased. Health-related quality of life is substantially lower for people with CKD than for the general population, and falls as GFR declines. Interventions targeting specific symptoms, or aimed at supporting educational or lifestyle considerations, make a positive difference to people living with CKD. Inequity in access to services for this disease disproportionally affects disadvantaged populations, and health service provision to incentivise early intervention over provision of care only for advanced CKD is still evolving in many countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization Balance

              As an essential component of innate immunity, macrophages have multiple functions in both inhibiting or promoting cell proliferation and tissue repair. Diversity and plasticity are hallmarks of macrophages. Classical M1 and alternative M2 activation of macrophages, mirroring the Th1–Th2 polarization of T cells, represent two extremes of a dynamic changing state of macrophage activation. M1-type macrophages release cytokines that inhibit the proliferation of surrounding cells and damage contiguous tissue, and M2-type macrophages release cytokines that promote the proliferation of contiguous cells and tissue repair. M1–M2 polarization of macrophage is a tightly controlled process entailing a set of signaling pathways, transcriptional and posttranscriptional regulatory networks. An imbalance of macrophage M1–M2 polarization is often associated with various diseases or inflammatory conditions. Therefore, identification of the molecules associated with the dynamic changes of macrophage polarization and understanding their interactions is crucial for elucidating the molecular basis of disease progression and designing novel macrophage-mediated therapeutic strategies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                16 August 2021
                2021
                : 12
                : 719880
                Affiliations
                [ 1 ]Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
                [ 2 ]The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
                [ 3 ]Faculty of Life Science and Medicine, Northwest University, Xi’an, China
                [ 4 ]Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
                Author notes

                Edited by: Zhiyong Guo, Second Military Medical University, China

                Reviewed by: Songyan Gao, Shanghai University, China

                Dong Wang, Anhui University of Chinese Medicine, China

                *Correspondence: Xiao-Yong Yu, gub70725@ 123456126.com ; Ying-Yong Zhao, zyy@ 123456nwu.edu.cn

                This article was submitted to Renal Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                719880
                10.3389/fphar.2021.719880
                8415231
                34483931
                0c5f3dbb-75c9-4c4e-bbc7-c395364750ee
                Copyright © 2021 Li, Sun, Hua, Suo, Chen, Yu and Zhao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 June 2021
                : 03 August 2021
                Funding
                Funded by: Foundation for Innovative Research Groups of the National Natural Science Foundation of China 10.13039/501100012659
                Award ID: 82074002 81673578 81872985
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                wnt/β-catenin,chronic kidney disease,renal fibrosis,traditional chinese medicine,natural product

                Comments

                Comment on this article