2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adult mammalian CNS has a limited capacity to regenerate after traumatic injury. In this study, a combinatorial strategy to promote axonal regeneration and functional recovery after spinal cord injury (SCI) was evaluated in adult rats. The rats were subjected to a complete transection in the thoracic spinal cord, and multichannel scaffolds seeded with activated Schwann cells (ASCs) and/or rat bone marrow-derived mesenchymal stem cells (MSCs) were acutely grafted into the 3-mm-wide transection gap. At 4 weeks post-transplantation and thereafter, the rats receiving scaffolds seeded with ASCs and MSCs exhibited significant recovery of nerve function as shown by the Basso, Beattie and Bresnahan (BBB) score and electrophysiological test results. Immunohistochemical analyses at 4 and 8 weeks after transplantation revealed that the implanted MSCs at the lesion/graft site survived and differentiated into neuron-like cells and co-localized with host neurons. Robust bundles of regenerated fibers were identified in the lesion/graft site in the ASC and MSC co-transplantation rats, and neurofilament 200 (NF) staining confirmed that these fibers were axons. Furthermore, myelin basic protein (MBP)-positive myelin sheaths were also identified at the lesion/graft site and confirmed via electron microscopy. In addition to expressing mature neuronal markers, sparse MSC-derived neuron-like cells expressed choline acetyltransferase (ChAT) at the injury site of the ASC and MSC co-transplantation rats. These findings suggest that co-transplantation of ASCs and MSCs in a multichannel polymer scaffold may represent a novel combinatorial strategy for the treatment of spinal cord injury.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Adult rat and human bone marrow stromal cells differentiate into neurons.

          Bone marrow stromal cells exhibit multiple traits of a stem cell population. They can be greatly expanded in vitro and induced to differentiate into multiple mesenchymal cell types. However, differentiation to non-mesenchymal fates has not been demonstrated. Here, adult rat stromal cells were expanded as undifferentiated cells in culture for more than 20 passages, indicating their proliferative capacity. A simple treatment protocol induced the stromal cells to exhibit a neuronal phenotype, expressing neuron-specific enolase, NeuN, neurofilament-M, and tau. With an optimal differentiation protocol, almost 80% of the cells expressed NSE and NF-M. The refractile cell bodies extended long processes terminating in typical growth cones and filopodia. The differentiating cells expressed nestin, characteristic of neuronal precursor stem cells, at 5 hr, but the trait was undetectable at 6 days. In contrast, expression of trkA, the nerve growth factor receptor, persisted from 5 hr through 6 days. Clonal cell lines, established from single cells, proliferated, yielding both undifferentiated and neuronal cells. Human marrow stromal cells subjected to this protocol also differentiated into neurons. Consequently, adult marrow stromal cells can be induced to overcome their mesenchymal commitment and may constitute an abundant and accessible cellular reservoir for the treatment of a variety of neurologic diseases. Copyright 2000 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology, demographics, and pathophysiology of acute spinal cord injury.

            Spinal cord injury occurs through various countries throughout the world with an annual incidence of 15 to 40 cases per million, with the causes of these injuries ranging from motor vehicle accidents and community violence to recreational activities and workplace-related injuries. Survival has improved along with a greater appreciation of patterns of presentation, survival, and complications. Despite much work having been done, the only treatment to date known to ameliorate neurologic dysfunction that occurs at or below the level of neurologic injury has been intravenous methylprednisolone therapy. Much research over the past 30 to 40 years has focused on elucidating the mechanisms of spinal cord injury, with the complex pathophysiologic processes slowly being unraveled. With a greater understanding of both primary and secondary mechanisms of injury, the roles of calcium, free radicals, sodium, excitatory amino acids, vascular mediators, and apoptosis have been elucidated. This review examines the epidemiology, demographics, and pathophysiology of acute spinal cord injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adult bone marrow stromal cells differentiate into neural cells in vitro.

              Bone marrow stromal cells (BMSC) normally give rise to bone, cartilage, and mesenchymal cells. Recently, bone marrow cells have been shown to have the capacity to differentiate into myocytes, hepatocytes, and glial cells. We now demonstrate that human and mouse BMSC can be induced to differentiate into neural cells under experimental cell culture conditions. BMSC cultured in the presence of EGF or BDNF expressed the protein and mRNA for nestin, a marker of neural precursors. These cultures also expressed glial fibrillary acidic protein (GFAP) and neuron-specific nuclear protein (NeuN). When labeled human or mouse BMSC were cultured with rat fetal mesencephalic or striatal cells, a small proportion of BMSC-derived cells differentiated into neuron-like cells expressing NeuN and glial cells expressing GFAP. Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                May 2017
                10 April 2017
                : 38
                : 5
                : 623-637
                Affiliations
                [1 ]Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
                [2 ]Department of Neurology, Zhengzhou University People's Hospital , Zhengzhou 450003, China
                [3 ]Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
                Author notes
                [✝]

                These authors contributed equally to this work.

                Article
                aps201711
                10.1038/aps.2017.11
                5457698
                28392569
                0c54c3d5-9b9a-43cc-a04a-9c447c56e741
                Copyright © 2017 CPS and SIMM
                History
                : 07 November 2016
                : 23 January 2017
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                spinal cord injury,plga scaffold,schwann cells,bone mesenchymal stem cells,axonal regeneration

                Comments

                Comment on this article