13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Accounting for individual‐specific variation in habitat‐selection studies: Efficient estimation of mixed‐effects models using Bayesian or frequentist computation

      1 , 2 , 3 , 4
      Journal of Animal Ecology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Popular frameworks for studying habitat selection include resource-selection functions (RSFs) and step-selection functions (SSFs), estimated using logistic and conditional logistic regression, respectively. Both frameworks compare environmental covariates associated with locations animals visit with environmental covariates at a set of locations assumed available to the animals. Conceptually, slopes that vary by individual, that is, random coefficient models, could be used to accommodate inter-individual heterogeneity with either approach. While fitting such models for RSFs is possible with standard software for generalized linear mixed-effects models (GLMMs), straightforward and efficient one-step procedures for fitting SSFs with random coefficients are currently lacking. To close this gap, we take advantage of the fact that the conditional logistic regression model (i.e. the SSF) is likelihood-equivalent to a Poisson model with stratum-specific fixed intercepts. By interpreting the intercepts as a random effect with a large (fixed) variance, inference for random-slope models becomes feasible with standard Bayesian techniques, or with frequentist methods that allow one to fix the variance of a random effect. We compare this approach to other commonly applied alternatives, including models without random slopes and mixed conditional regression models fit using a two-step algorithm. Using data from mountain goats (Oreamnos americanus) and Eurasian otters (Lutra lutra), we illustrate that our models lead to valid and feasible inference. In addition, we conduct a simulation study to compare different estimation approaches for SSFs and to demonstrate the importance of including individual-specific slopes when estimating individual- and population-level habitat-selection parameters. By providing coded examples using integrated nested Laplace approximations (INLA) and Template Model Builder (TMB) for Bayesian and frequentist analysis via the R packages R-INLA and glmmTMB, we hope to make efficient estimation of RSFs and SSFs with random effects accessible to anyone in the field. SSFs with individual-specific coefficients are particularly attractive since they can provide insights into movement and habitat-selection processes at fine-spatial and temporal scales, but these models had previously been very challenging to fit.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The ecology of individuals: incidence and implications of individual specialization.

          Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual-level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species distributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between-individual variation can sometimes comprise the majority of the population's niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, behavioral, and ecological mechanisms that can generate intrapopulation variation. Finally, individual specialization has potentially important ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency-dependent interactions that can profoundly affect the population's stability, the amount of intraspecific competition, fitness-function shapes, and the population's capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Conclusions beyond support: overconfident estimates in mixed models

            Mixed-effect models are frequently used to control for the nonindependence of data points, for example, when repeated measures from the same individuals are available. The aim of these models is often to estimate fixed effects and to test their significance. This is usually done by including random intercepts, that is, intercepts that are allowed to vary between individuals. The widespread belief is that this controls for all types of pseudoreplication within individuals. Here we show that this is not the case, if the aim is to estimate effects that vary within individuals and individuals differ in their response to these effects. In these cases, random intercept models give overconfident estimates leading to conclusions that are not supported by the data. By allowing individuals to differ in the slopes of their responses, it is possible to account for the nonindependence of data points that pseudoreplicate slope information. Such random slope models give appropriate standard errors and are easily implemented in standard statistical software. Because random slope models are not always used where they are essential, we suspect that many published findings have too narrow confidence intervals and a substantially inflated type I error rate. Besides reducing type I errors, random slope models have the potential to reduce residual variance by accounting for between-individual variation in slopes, which makes it easier to detect treatment effects that are applied between individuals, hence reducing type II errors as well.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Application of random effects to the study of resource selection by animals.

              1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
                Bookmark

                Author and article information

                Journal
                Journal of Animal Ecology
                J Anim Ecol
                Wiley
                0021-8790
                1365-2656
                January 13 2020
                January 2020
                September 09 2019
                January 2020
                : 89
                : 1
                : 80-92
                Affiliations
                [1 ]Institute of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
                [2 ]Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) Trondheim Norway
                [3 ]Wildlife Sciences Faculty of Forest Science and Forest Ecology University of Goettingen Göttingen Germany
                [4 ]Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul MN USA
                Article
                10.1111/1365-2656.13087
                31454066
                0c48dae5-5628-4b26-96e1-3140e1eb5c08
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article