21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hedgehog (Hh) is a secreted morphogen that elicits differentiation and patterning in developing tissues. Multiple proposed mechanisms to regulate Hh dispersion includes lipoprotein particles and exosomes. Here we report that vertebrate Sonic Hedgehog (Shh) is secreted on two types of extracellular-vesicles/exosomes, from human cell lines and primary chick notochord cells. Although largely overlapping in size as estimated from electron micrographs, the two exosomal fractions exhibited distinct protein and RNA composition. We have probed the functional properties of these vesicles using cell-based assays of Hh-elicited gene expression. Our results suggest that while both Shh-containing exo-vesicular fractions can activate an ectopic Gli-luciferase construct, only exosomes co-expressing Integrins can activate endogenous Shh target genes HNF3β and Olig2 during the differentiation of mouse ES cells to ventral neuronal progenitors. Taken together, our results demonstrate that primary vertebrate cells secrete Shh in distinct vesicular forms, and support a model where packaging of Shh along with other signaling proteins such as Integrins on exosomes modulates target gene activation. The existence of distinct classes of Shh-containing exosomes also suggests a previously unappreciated complexity for fine-tuning of Shh-mediated gradients and pattern formation.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Exosomes: secreted vesicles and intercellular communications

          Exosomes are small membrane vesicles of endocytic origin secreted by most cell types, and are thought to play important roles in intercellular communications. Although exosomes were originally described in 1983, interest in these vesicles has really increased dramatically in the last 3 years, after the finding that they contain mRNA and microRNA. This discovery sparked renewed interest for the general field of membrane vesicles involved in intercellular communications, and research on these structures has grown exponentially over the last few years, probing their composition and function, as well as their potential value as biomarkers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Directed differentiation of embryonic stem cells into motor neurons.

            Inductive signals and transcription factors involved in motor neuron generation have been identified, raising the question of whether these developmental insights can be used to direct stem cells to a motor neuron fate. We show that developmentally relevant signaling factors can induce mouse embryonic stem (ES) cells to differentiate into spinal progenitor cells, and subsequently into motor neurons, through a pathway recapitulating that used in vivo. ES cell-derived motor neurons can populate the embryonic spinal cord, extend axons, and form synapses with target muscles. Thus, inductive signals involved in normal pathways of neurogenesis can direct ES cells to form specific classes of CNS neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine.

              Basal cell carcinoma, medulloblastoma, rhabdomyosarcoma and other human tumours are associated with mutations that activate the proto-oncogene Smoothened (SMO) or that inactivate the tumour suppressor Patched (PTCH). Smoothened and Patched mediate the cellular response to the Hedgehog (Hh) secreted protein signal, and oncogenic mutations affecting these proteins cause excess activity of the Hh response pathway. Here we show that the plant-derived teratogen cyclopamine, which inhibits the Hh response, is a potential 'mechanism-based' therapeutic agent for treatment of these tumours. We show that cyclopamine or synthetic derivatives with improved potency block activation of the Hh response pathway and abnormal cell growth associated with both types of oncogenic mutation. Our results also indicate that cyclopamine may act by influencing the balance between active and inactive forms of Smoothened.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 December 2014
                2014
                : 4
                : 7357
                Affiliations
                [1 ]Institute for Stem Cell Biology and Regenerative Medicine , Bangalore, India
                [2 ]Institut Curie, UMR 144 , CNRS, F-75248 Paris, France
                [3 ]Structure and Membrane Compartments, Centre National de la Recherche Scientifique , UMR144, Paris F-75248, France
                [4 ]Cell and Tissue Imaging Facility , Infrastructures en Biologie Sante et Agronomie (IBiSA), Paris F-75248, France
                [5 ]CSIR-Center for Cellular and Molecular Biology , Hyderabad, India
                Author notes
                Article
                srep07357
                10.1038/srep07357
                4258658
                25483805
                0c1a49f1-cdf1-4181-938d-75120df9b710
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 14 September 2014
                : 18 November 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article