60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimal Use of Vaccines for Control of Influenza A Virus in Swine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.

          Related collections

          Most cited references182

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis for the generation in pigs of influenza A viruses with pandemic potential.

          Genetic and biologic observations suggest that pigs may serve as "mixing vessels" for the generation of human-avian influenza A virus reassortants, similar to those responsible for the 1957 and 1968 pandemics. Here we demonstrate a structural basis for this hypothesis. Cell surface receptors for both human and avian influenza viruses were identified in the pig trachea, providing a milieu conducive to viral replication and genetic reassortment. Surprisingly, with continued replication, some avian-like swine viruses acquired the ability to recognize human virus receptors, raising the possibility of their direct transmission to human populations. These findings help to explain the emergence of pandemic influenza viruses and support the need for continued surveillance of swine for viruses carrying avian virus genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytotoxic T-cell immunity to influenza.

            In a study designed to determine whether cytotoxic T lymphocytes contribute to immunity against influenza virus infection, we inoculated 63 volunteers intranasally with live unattenuated influenza A/Munich/1/79 virus. Over the next seven days clinical observations were made, and the amount of virus shed was measured. The protective effects of preinfection serum antibody and of cytotoxic T-cell immunity against influenza A virus were assessed for each participant. All subjects with demonstrable T-cell responses cleared virus effectively. This response was observed in volunteers in all age groups, including those born after 1956, who did not have specific antibody and hence had probably not been exposed to this subtype of influenza A virus before. Cytotoxic T cells show cross-reactivity in their recognition of the different subtypes of influenza A virus, in contrast to the antibody response that is specific for each virus subtype. We conclude that cytotoxic T cells play a part in recovery from influenza virus infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium.

              Influenza virus neuraminidase (NA) plays an essential role in release and spread of progeny virions, following the intracellular viral replication cycle. To test whether NA could also facilitate virus entry into cell, we infected cultures of human airway epithelium with human and avian influenza viruses in the presence of the NA inhibitor oseltamivir carboxylate. Twenty- to 500-fold less cells became infected in drug-treated versus nontreated cultures (P < 0.0001) 7 h after virus application, indicating that the drug suppressed the initiation of infection. These data demonstrate that viral NA plays a role early in infection, and they provide further rationale for the prophylactic use of NA inhibitors.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Vaccines (Basel)
                Vaccines (Basel)
                vaccines
                Vaccines
                MDPI
                2076-393X
                30 January 2015
                March 2015
                : 3
                : 1
                : 22-73
                Affiliations
                Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; E-Mails: sandbult@ 123456iastate.edu (M.R.S.); spickler@ 123456iastate.edu (A.R.S.); zaabelp@ 123456iastate.edu (P.K.Z.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: jaroth@ 123456iastate.edu ; Tel.: +1-515-294-8459.
                Article
                vaccines-03-00022
                10.3390/vaccines3010022
                4494241
                26344946
                0bfb2b98-f3d5-4473-92a5-e47bf924efe3
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 December 2014
                : 19 January 2015
                Categories
                Review

                influenza a virus in swine,vaccines,immune response,surveillance,veterinary diagnostics

                Comments

                Comment on this article