3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remote Sensing-Based Estimates of Changes in Stored Groundwater at Local Scales: Case Study for Two Groundwater Subbasins in California’s Central Valley

      , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sustainable groundwater management requires high-quality and low-latency estimates of changes in groundwater storage (∆Sgw). However, estimates of ∆Sgw produced using traditional methods, including groundwater models and well-based measurements, typically lag years behind the present because collecting the required on-the-ground data is a time consuming, expensive, and labor-intensive task. Satellite remote sensing measurements provide potential pathways to overcome these limitations by quantifying ∆Sgw through closing the water balance. However, the range of spatial scales over which ∆Sgw can be accurately estimated using remote sensing products remains unclear. To bridge this knowledge gap, this study quantified ∆Sgw for the period of 2002 through to 2021 using the water balance method and multiple remote sensing products in two subbasins (~2700 km2–3500 km2) within California’s Central Valley: (1) the Kaweah–Tule Subbasin, a region where the pumping of groundwater to support agriculture has resulted in decades of decline in head levels, resulting in land subsidence, damage to infrastructure, and contamination of drinking water and (2) the Butte Subbasin, which receives considerably more rainfall and surface water and has not experienced precipitous drops in groundwater. The remote sensing datasets which we utilized included multiple sources for key hydrologic components in the study area: precipitation, evapotranspiration, and soil moisture. To assess the fidelity of the remote sensing-based model, we compared estimates of ∆Sgw to alternative estimates of ∆Sgw derived from independent sources of data: groundwater wells as well as a widely used groundwater flow model. The results showed strong agreement in the Kaweah–Tule Subbasin in long-term ∆Sgw trends and shorter-term trends during droughts, and modest agreement in the Butte Subbasin with remote sensing datasets suggesting more seasonal variability than validation datasets. Importantly, our analysis shows that the timely availability of remote sensing data can potentially enable ∆Sgw estimates at sub-annual latencies, which is timelier than estimates derived through alternate methods, and thus can support adaptive management and decision making. The models developed herein can aid in assessing aquifer dynamics, and can guide the development of sustainable groundwater management practices at spatial scales relevant for management and decision making.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes

          The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015

            We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Global Land Data Assimilation System

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                April 2023
                April 16 2023
                : 15
                : 8
                : 2100
                Article
                10.3390/rs15082100
                0bf4d5cc-7ff6-41ea-a109-ab27d9fe4431
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article