20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aplicações do Deep Learning para diagnóstico de doenças e identificação de insetos vetores Translated title: Deep Learning applications for disease diagnosis and identification of insect vectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RESUMO Deep Learning é uma técnica de aprendizado de máquina na qual o programa computacional aprende padrões diretamente a partir de imagens classificadas previamente. O presente ensaio objetivou apresentar essa técnica e algumas de suas aplicações para diagnóstico de doenças e identificação de insetos vetores para incentivar profissionais da saúde que não tenham conhecimento aprofundado em informática e que desejem utilizar a ferramenta para realizar análises automatizadas. Deep Learning tem sido aplicado para diagnóstico de câncer, fibrose cardíaca, tuberculose, detecção de parasitos como Plasmodium e Leishmania e ainda para identificação de insetos vetores. Na Universidade de Brasília, a técnica tem sido aplicada para desenvolver uma ferramenta para identificar lesões ulceradas de leishmaniose em diagnóstico diferencial e para detectar Leishmania em lâminas de estudos histopatológicos. Além disso, Deep Learning tem sido usado para identificar as espécies de vetores da doença de Chagas – o que é importante para auxiliar na vigilância epidemiológica. O uso da tecnologia envolve desafios éticos e procedimentais que são discutidos no presente ensaio. O ensaio aponta perspectivas de desenvolvimento de aplicativos que auxiliem os profissionais de saúde no diagnóstico de Leishmaniose e de vetores da doença de Chagas, o que vai ao encontro dos objetivos da pesquisa translacional.

          Translated abstract

          ABSTRACT Deep Learning is a machine learning technique in which the computational algorithm learns patterns directly from images previously classified. The present essay aims to show some of its applications for clinical diagnosis and identification of insect vectors to encourage health professionals who do not have deep knowledge of computer science and who wish to use the tool to perform automated analyzes. Deep Learning has been applied to the diagnosis of cancer, cardiac fibrosis, tuberculosis, detection of parasites such as Plasmodium and Leishmania, and to identify insect vectors. At the University of Brasília, Deep Learning has been used to develop a tool to identify ulcers caused by leishmaniasis, as well as to detect Leishmania parasites. Moreover, Deep Learning was applied to identify the species of vectors of Chagas disease, an important contribution to the epidemiological surveillance of the disease. The use of Deep Learning involves some ethical and procedural issues that are discussed in this paper. Finally, the essay points out perspectives of development of apps that assist health professionals in the diagnosis of Leishmaniasis and Chagas disease vectors, which meets the goals of translational research.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems

          TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org. Version 2 updates only the metadata, to correct the formatting of Mart\'in Abadi's name
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer

            Supplemental Digital Content is available in the text.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Deep learning

                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                sdeb
                Saúde em Debate
                Saúde debate
                Centro Brasileiro de Estudos de Saúde (Rio de Janeiro, RJ, Brazil )
                0103-1104
                2358-2898
                November 2019
                : 43
                : spe2
                : 147-154
                Affiliations
                [1] Brasília Distrito Federal orgnameUniversidade de Brasília Brazil
                Article
                S0103-11042019000600147 S0103-1104(19)04300200147
                10.1590/0103-11042019s211
                0bea5f1c-a812-40a2-8618-a38f8af5fd7e

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 21 August 2019
                : 08 April 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 36, Pages: 8
                Product

                SciELO Public Health

                Self URI: Texto completo somente em PDF (PT)
                Categories
                Ensaio

                Chagas Disease,Aprendizado profundo,Diagnóstico,Leishmaniose,Doença de Chagas,Deep Learning,Diagnosis,Leishmaniasis

                Comments

                Comment on this article