81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease : Treatment of Motor Symptoms in PD

      1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , on behalf of the Movement Disorder Society Evidence-Based Medicine Committee
      Movement Disorders
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this review was to update evidence-based medicine recommendations for treating motor symptoms of Parkinson's disease (PD).

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          Parkinson disease

          Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).

            A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous training of the professionals and education of the patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson's disease: a randomised, controlled, double-blind, double-dummy study.

              Levodopa is the most effective therapy for Parkinson's disease, but chronic treatment is associated with the development of potentially disabling motor complications. Experimental studies suggest that motor complications are due to non-physiological, intermittent administration of the drug, and can be reduced with continuous delivery. We aimed to assess efficacy and safety of levodopa-carbidopa intestinal gel delivered continuously through an intrajejunal percutaneous tube. In our 12-week, randomised, double-blind, double-dummy, double-titration trial, we enrolled adults (aged ≥ 30 years) with advanced Parkinson's disease and motor complications at 26 centres in Germany, New Zealand, and the USA. Eligible participants had jejunal placement of a percutaneous gastrojejunostomy tube, and were then randomly allocated (1:1) to treatment with immediate-release oral levodopa-carbidopa plus placebo intestinal gel infusion or levodopa-carbidopa intestinal gel infusion plus oral placebo. Randomisation was stratified by site, with a mixed block size of 2 or 4. The primary endpoint was change from baseline to final visit in motor off-time. We assessed change in motor on-time without troublesome dyskinesia as a prespecified key secondary outcome. We assessed efficacy in a full-analysis set of participants with data for baseline and at least one post-baseline assessment, and imputed missing data with the last observation carried forward approach. We assessed safety in randomly allocated patients who underwent the percutaneous gastrojejunostomy procedure. This study is registered with ClinicalTrials.gov, numbers NCT00660387 and NCT0357994. From baseline to 12 weeks in the full-analysis set, mean off-time decreased by 4.04 h (SE 0.65) for 35 patients allocated to the levodopa-carbidopa intestinal gel group compared with a decrease of 2.14 h (0.66) for 31 patients allocated to immediate-release oral levodopa-carbidopa (difference -1.91 h [95% CI -3.05 to -0.76]; p=0.0015). Mean on-time without troublesome dyskinesia increased by 4.11 h (SE 0.75) in the intestinal gel group and 2.24 h (0.76) in the immediate-release oral group (difference 1.86 [95% CI 0.56 to 3.17]; p=0.0059). In the safety analyses 35 (95%) of 37 patients allocated to the levodopa-carbidopa intestinal gel group had adverse events (five [14%] serious), as did 34 (100%) of 34 patients allocated to the immediate-release oral levodopa-carbidopa group (seven [21%] serious), mainly associated with the percutaneous gastrojejunostomy tube. Continuous delivery of levodopa-carbidopa with an intestinal gel offers a promising option for control of advanced Parkinson's disease with motor complications. Benefits noted with intestinal gel delivery were of a greater magnitude than were those obtained with medical therapies to date, and our study is, to our knowledge, the first demonstration of the benefit of continuous levodopa delivery in a double-blind controlled study. AbbVie. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Movement Disorders
                Mov Disord.
                Wiley
                08853185
                August 2018
                August 2018
                March 23 2018
                : 33
                : 8
                : 1248-1266
                Affiliations
                [1 ]Edmund J. Safra Program, Movement Disorder Clinic; Toronto Western Hospital; Toronto Ontario Canada
                [2 ]University of Toronto Department of Medicine; Toronto Ontario Canada
                [3 ]Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders; Danube Hospital; Vienna Austria
                [4 ]Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders; University of Malaya; Kuala Lumpur Malaysia
                [5 ]Rush University Medical Center; Chicago Illinois USA
                [6 ]Jesse Brown VA Medical Center; Chicago Illinois USA
                [7 ]Department of Neurology, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
                [8 ]Department of Neurology; Medical University Innsbruck; Innsbruck Austria
                [9 ]Department of Neurology, Santa Maria Hospital, Instituto de Medicina Molecular; University of Lisbon; Lisbon Portugal
                [10 ]Cure Huntington's Disease Initiative (CHDI) Management/CHDI Foundation, Princeton, NJ; USA
                [11 ]Instituto de Medicina Molecular; University of Lisbon; Lisbon Portugal
                Article
                10.1002/mds.27372
                29570866
                0bc8f7ac-0253-49dd-a596-f9727cc92be6
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article