1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Impact of caudal hindbrain glycogen metabolism on A2 noradrenergic neuron AMPK activation and ventromedial hypothalamic nucleus norepinephrine activity and glucoregulatory neurotransmitter marker protein expression

      , , ,
      Neuropeptides
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Glucose and osmosensitive neurones of the rat hypothalamus.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

            A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hypothalamic glucose sensing: making ends meet

              The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development, thermoregulation maintains optimal core temperature in a changing environment, and reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats while the circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body's energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain's glucose supply. This review will first describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes) will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of neuroendocrine function.
                Bookmark

                Author and article information

                Journal
                Neuropeptides
                Neuropeptides
                Elsevier BV
                01434179
                August 2020
                August 2020
                : 82
                : 102055
                Article
                10.1016/j.npep.2020.102055
                0baf6f8b-47a7-4049-ae93-5e2dd72145eb
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article