19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sphingosine-1-phosphate links glycosphingolipid metabolism to neurodegeneration via a calpain-mediated mechanism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have recently reported that the bioactive lipid sphingosine-1-phosphate (S1P), usually signaling proliferation and anti-apoptosis induces neuronal death when generated by sphingosine-kinase2 and when accumulation due to S1P-lyase deficiency occurs. In the present study, we identify the signaling cascade involved in the neurotoxic effect of sphingoid-base phosphates. We demonstrate that the calcium-dependent cysteine protease calpain mediates neurotoxicity by induction of the endoplasmic reticulum stress-specific caspase cascade and activation of cyclin-dependent kinase5 (CDK5). The latter is involved in an abortive reactivation of the cell cycle and also enhances tau phosphorylation. Neuroanatomical studies in the cerebellum document for the first time that indeed neurons with abundant S1P-lyase expression are those, which degenerate first in S1P-lyase-deficient mice. We therefore propose that an impaired metabolism of glycosphingolipids, which are prevalent in the central nervous system, might be linked via S1P, their common catabolic intermediate, to neuronal death.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.

          We report here the purification of the third protein factor, Apaf-3, that participates in caspase-3 activation in vitro. Apaf-3 was identified as a member of the caspase family, caspase-9. Caspase-9 and Apaf-1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome c and dATP, an event that leads to caspase-9 activation. Activated caspase-9 in turn cleaves and activates caspase-3. Depletion of caspase-9 from S-100 extracts diminished caspase-3 activation. Mutation of the active site of caspase-9 attenuated the activation of caspase-3 and cellular apoptotic response in vivo, indicating that caspase-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sphingosine-1-phosphate: an enigmatic signalling lipid.

            The evolutionarily conserved actions of the sphingolipid metabolite, sphingosine-1-phosphate (S1P), in yeast, plants and mammals have shown that it has important functions. In higher eukaryotes, S1P is the ligand for a family of five G-protein-coupled receptors. These S1P receptors are differentially expressed, coupled to various G proteins, and regulate angiogenesis, vascular maturation, cardiac development and immunity, and are important for directed cell movement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration.

              Cyclin-dependent kinase 5 (Cdk5) is required for proper development of the mammalian central nervous system. To be activated, Cdk5 has to associate with its regulatory subunit, p35. We have found that p25, a truncated form of p35, accumulates in neurons in the brains of patients with Alzheimer's disease. This accumulation correlates with an increase in Cdk5 kinase activity. Unlike p35, p25 is not readily degraded, and binding of p25 to Cdk5 constitutively activates Cdk5, changes its cellular location and alters its substrate specificity. In vivo the p25/Cdk5 complex hyperphosphorylates tau, which reduces tau's ability to associate with microtubules. Moreover, expression of the p25/Cdk5 complex in cultured primary neurons induces cytoskeletal disruption, morphological degeneration and apoptosis. These findings indicate that cleavage of p35, followed by accumulation of p25, may be involved in the pathogenesis of cytoskeletal abnormalities and neuronal death in neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group
                1350-9047
                1476-5403
                August 2011
                18 February 2011
                1 August 2011
                : 18
                : 8
                : 1356-1365
                Affiliations
                [1 ]simpleLIMES Institute Membrane Biology and Lipid Biochemistry, University of Bonn , Bonn 53121, Germany
                [2 ]simpleInstitute of Physiology, University of Bonn , Bonn 53115, Germany
                [3 ]simpleDepartment of Anatomy, Division of Neuroanatomy, University of Bonn , Bonn 53115, Germany
                Author notes
                [* ]simpleLIMES Institute Membrane Biology and Lipid Biochemistry, University of Bonn , Bonn 53121, Germany. Tel: +49 228 73 2703; Fax: +49 288 73 4845; E-mail: g.echten.deckert@ 123456uni-bonn.de
                Article
                cdd20117
                10.1038/cdd.2011.7
                3172106
                21331079
                0bad8ced-9da9-4807-98fa-3549eed3d9f9
                Copyright © 2011 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 16 July 2010
                : 16 December 2010
                : 03 January 2011
                Categories
                Original Paper

                Cell biology
                cis-4-methylsphingosine,neurodegeneration,calpain,apoptosis,ca2+-release,sphingosine-1-phosphate

                Comments

                Comment on this article