There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
General trends and strategies for novel pesticides are summarized. Global pesticide sales and pesticide discovery research are also briefly reviewed. At least 105 chemical pesticides have been launched during the past decade or are under development: 43 fungicides, 34 insecticides/acaricides, 6 nematicides, 21 herbicides, and 1 herbicide safener. Most of them are safe to humans and environmentally friendly. The most developed fungicides are SDHI (succinate dehydrogenase inhibitors), DMI (demethylation inhibitors), QoI (quinone outside inhibitors), and QiI (quinone inside inhibitors). Due to the development of resistance to fungicides with existing modes of action, many fungicides possessing various novel modes of action have been launched or are under development. The trend of insecticide development is changing from organophosphorus, carbamate, and synthetic pyrethroids to nicotinic and diamide insecticides. During the past decade, compounds possessing a variety of novel modes of action have also been launched or are under development. Flupyradifurone and flupyrimin, exhibiting extremely low honeybee toxicity, have been developed and subjected to practical use. Herbicides possessing varied modes of action, such as acetolactate synthase, p -hydroxyphenylpyruvate dioxygenase, protoporphyrinogen oxidase, and very-long-chain fatty acid elongase inhibition, have been developed, but no herbicides possessing a novel mode action have commercialized in nearly 30 years. It is of interest that cyclopyrimorate, which was recently launched, and tetflupyrolimet, which is under development, have novel modes action: homogentisate solanesyltransferase (HST) and dihydroorotate dehydrogenase (DHODH) inhibition, respectively. The development of useful acaricides and nematicides is also progressing. Some natural product origin pesticides are getting attention.
Integrated Pest Management (IPM) provides an illustration of how crop protection has (or has not) evolved over the past six decades. Throughout this period, IPM has endeavored to promote sustainable forms of agriculture, pursued sharp reductions in synthetic pesticide use, and thereby resolved myriad socio-economic, environmental, and human health challenges. Global pesticide use has, however, largely continued unabated, with negative implications for farmer livelihoods, biodiversity conservation, and the human right to food. In this review, we examine how IPM has developed over time and assess whether this concept remains suited to present-day challenges. We believe that despite many good intentions, hard realities need to be faced. 1) We identify the following major weaknesses: i) a multitude of IPM definitions that generate unnecessary confusion; ii) inconsistencies between IPM concepts, practice, and policies; iii) insufficient engagement of farmers in IPM technology development and frequent lack of basic understanding of its underlying ecological concepts. 2) By diverting from the fundamental IPM principles, integration of practices has proceeded along serendipitous routes, proven ineffective, and yielded unacceptable outcomes. 3) We show that in the majority of cases, chemical control still remains the basis of plant health programs. 4) Furthermore, IPM research is often lagging, tends to be misguided, and pays insufficient attention to ecology and to the ecological functioning of agroecosystems. 5) Since the 1960s, IPM rules have been twisted, its foundational concepts have degraded and its serious (farm-level) implementation has not advanced. To remedy this, we are proposing Agroecological Crop Protection as a concept that captures how agroecology can be optimally put to the service of crop protection. Agroecological Crop Protection constitutes an interdisciplinary scientific field that comprises an orderly strategy (and clear prioritization) of practices at the field, farm, and agricultural landscape level and a dimension of social and organizational ecology.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.