70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.

          Author Summary

          Although the current standard of care for Human Immunodeficiency Virus (HIV) is high, viral resistance has emerged to every drug currently in the clinic, in some cases rendering the entire class ineffective for patients. A new class of antiretroviral drugs would be effective against strains of HIV-1 that are resistant to any existing drug and would expand the therapeutic options available to patients. Capsid is the primary structural protein of HIV and a critical part of the viral replication cycle, both in the assembly of viral particles and in the infection of host cells. We report a new class of antiretrovirals that targets HIV-1 capsid and demonstrate that it is active at two critical stages in the viral replication cycle. These compounds were consistently effective against a range of clinical strains of HIV-1, from various sub-types, as well as HIV-2. Finally, the compounds bind in a unique pocket on capsid that has not previously been highlighted as a drug binding site. We believe this new class of antiretrovirals can serve as a starting point for the development of a new generation of HIV-1 therapeutics and, more generally, underscores the potential of capsid as a therapeutic target.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          A quantitative assay for HIV DNA integration in vivo.

          Early steps of infection by HIV-1 involve entry of the viral core into cells, reverse transcription to form the linear viral DNA, and integration of that DNA into a chromosome of the host. The unintegrated DNA can also follow non-productive pathways, in which it is circularized by recombination between DNA long-terminal repeats (LTRs), circularized by ligation of the DNA ends or degraded. Here we report quantitative methods that monitor formation of reverse transcription products, two-LTR circles and integrated proviruses. The integration assay employs a novel quantitative form of Alu-PCR that should be generally applicable to studies of integrating viruses and gene transfer vectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid.

            The HIV-1 capsid protein forms the conical core structure at the center of the mature virion. Capsid also binds the human peptidyl prolyl isomerase, cyclophilin A, thereby packaging the enzyme into the virion. Cyclophilin A subsequently performs an essential function in HIV-1 replication, possibly helping to disassemble the capsid core upon infection. We report the 2.36 A crystal structure of the N-terminal domain of HIV-1 capsid (residues 1-151) in complex with human cyclophilin A. A single exposed capsid loop (residues 85-93) binds in the enzyme's active site, and Pro-90 adopts an unprecedented trans conformation. The structure suggests how cyclophilin A can act as a sequence-specific binding protein and a nonspecific prolyl isomerase. In the crystal lattice, capsid molecules assemble into continuous planar strips. Side by side association of these strips may allow capsid to form the surface of the viral core. Cyclophilin A could then function by weakening the association between capsid strips, thereby promoting disassembly of the viral core.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel.

              The availability of new antiretroviral drugs and formulations, including drugs in new classes, and recent data on treatment choices for antiretroviral-naive and -experienced patients warrant an update of the International AIDS Society-USA guidelines for the use of antiretroviral therapy in adult human immunodeficiency virus (HIV) infection. To summarize new data in the field and to provide current recommendations for the antiretroviral management and laboratory monitoring of HIV infection. This report provides guidelines in key areas of antiretroviral management: when to initiate therapy, choice of initial regimens, patient monitoring, when to change therapy, and how best to approach treatment options, including optimal use of recently approved drugs (maraviroc, raltegravir, and etravirine) in treatment-experienced patients. A 14-member panel with expertise in HIV research and clinical care was appointed. Data published or presented at selected scientific conferences since the last panel report (August 2006) through June 2008 were identified. Data that changed the previous guidelines were reviewed by the panel (according to section). Guidelines were drafted by section writing committees and were then reviewed and edited by the entire panel. Recommendations were made by panel consensus. New data and considerations support initiating therapy before CD4 cell count declines to less than 350/microL. In patients with 350 CD4 cells/microL or more, the decision to begin therapy should be individualized based on the presence of comorbidities, risk factors for progression to AIDS and non-AIDS diseases, and patient readiness for treatment. In addition to the prior recommendation that a high plasma viral load (eg, >100,000 copies/mL) and rapidly declining CD4 cell count (>100/microL per year) should prompt treatment initiation, active hepatitis B or C virus coinfection, cardiovascular disease risk, and HIV-associated nephropathy increasingly prompt earlier therapy. The initial regimen must be individualized, particularly in the presence of comorbid conditions, but usually will include efavirenz or a ritonavir-boosted protease inhibitor plus 2 nucleoside reverse transcriptase inhibitors (tenofovir/emtricitabine or abacavir/lamivudine). Treatment failure should be identified and managed promptly, with the goal of therapy, even in heavily pretreated patients, being an HIV-1 RNA level below assay detection limits.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2010
                December 2010
                9 December 2010
                : 6
                : 12
                : e1001220
                Affiliations
                [1 ]Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California, United States of America
                [2 ]Antiviral Biology, Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
                [3 ]Structural Biology Department, Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
                University of Geneva, Switzerland
                Author notes

                ¤a: Current address: Biochemical Pharmacology Department, Genentech Inc., South San Francisco, California, United States of America

                ¤b: Current address: School of Medicine, University of California San Diego, San Diego, California, United States of America

                ¤c: Current address: NAEJA Pharmaceuticals Inc., Edmonton, Alberta, Canada

                ¤d: Current address: Adamas Pharmaceuticals, Emeryville, California, United States of America

                ¤e: Current address: Novartis Institute for Tropical Diseases, Singapore

                Conceived and designed the experiments: WSB CP SLB. Performed the experiments: SLI MA RB JC JI LJ RH AK JAN ADS KW HW. Analyzed the data: WSB CP DGB GC AKP MP KW SLB. Wrote the paper: WSB CP SLI SLB.

                Article
                10-PLPA-RA-3489R3
                10.1371/journal.ppat.1001220
                3000358
                21170360
                0b3ff949-5259-4069-ada8-4cfca0016613
                Blair et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 June 2010
                : 4 November 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Virology/Antivirals, including Modes of Action and Resistance
                Virology/Immunodeficiency Viruses
                Virology/Viral Replication and Gene Regulation
                Virology/Virion Structure, Assembly, and Egress

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article