10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unveiling hidden structural patterns in the SARS-CoV-2 genome: Computational insights and comparative analysis

      research-article
      * , , * ,
      PLOS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV-2, the causative agent of COVID-19, is known to exhibit secondary structures in its 5’ and 3’ untranslated regions, along with the frameshifting stimulatory element situated between ORF1a and 1b. To identify additional regions containing conserved structures, we utilized a multiple sequence alignment with related coronaviruses as a starting point. We applied a computational pipeline developed for identifying non-coding RNA elements. Our pipeline employed three different RNA structural prediction approaches. We identified forty genomic regions likely to harbor structures, with ten of them showing three-way consensus substructure predictions among our predictive utilities. We conducted intracomparisons of the predictive utilities within the pipeline and intercomparisons with four previously published SARS-CoV-2 structural datasets. While there was limited agreement on the precise structure, different approaches seemed to converge on regions likely to contain structures in the viral genome. By comparing and combining various computational approaches, we can predict regions most likely to form structures, as well as a probable structure or ensemble of structures. These predictions can be used to guide surveillance, prophylactic measures, or therapeutic efforts. Data and scripts employed in this study may be found at https://doi.org/10.5281/zenodo.8298680.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A pneumonia outbreak associated with a new coronavirus of probable bat origin

            Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MUSCLE: multiple sequence alignment with high accuracy and high throughput.

              We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draft
                Role: Funding acquisitionRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLOS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2024
                4 April 2024
                : 19
                : 4
                : e0298164
                Affiliations
                [001] Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
                Albert Einstein College of Medicine, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-2333-5028
                Article
                PONE-D-23-32321
                10.1371/journal.pone.0298164
                10994416
                38574063
                0b22d549-b460-4324-811f-98e7476f2746
                © 2024 Ziesel, Jabbari

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 October 2023
                : 19 January 2024
                Page count
                Figures: 8, Tables: 1, Pages: 22
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100004318, Microsoft;
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100000038, Natural Sciences and Engineering Research Council of Canada;
                Award ID: RGPIN-2020-04243
                Award Recipient :
                Funded by: National Research Council of Canada
                Award ID: DHGA-110-1
                Award Recipient :
                This study was financially supported by Microsoft Azure AI for Health ( https://www.microsoft.com/en-us/research/project/ai-for-health) in the form of an award received by HJ. This study was also financially supported by Natural Sciences and Engineering Research Council of Canada ( https://www.nserc-crsng.gc.ca) in the form of a NSERC Discovery grant (RGPIN-2020-04243) received by HJ. This study was also financially supported by National Research Council of Canada ( https://nrc.canada.ca) in the form of a DHGA grant (DHGA-110-1) received by HJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Molecular biology
                Macromolecular structure analysis
                RNA structure
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA structure
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and Life Sciences
                Genetics
                Genomics
                Biology and Life Sciences
                Genetics
                Genomics
                Structural Genomics
                Biology and life sciences
                Molecular biology
                Macromolecular structure analysis
                RNA structure
                RNA structure prediction
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA structure
                RNA structure prediction
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Sequence Alignment
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Coronaviruses
                Custom metadata
                Data and scripts employed in this study may be found at https://doi.org/10.5281/zenodo.8298680.
                COVID-19

                Uncategorized
                Uncategorized

                Comments

                Comment on this article