13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improving glycemic control in model mice with type 2 diabetes by increasing superoxide dismutase (SOD) activity using silk fibroin hydrolysate (SFH)

      , , , ,
      Biochemical and Biophysical Research Communications
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Islet cell dysfunction in type 2 diabetes is primarily attributed to the increased apoptosis of pancreatic beta cells. Silk fibroin hydrolysate (SFH) has an effect on blood in type 2 diabetes model mice (C57BL/KsJ-db/db). However, its exact mechanism is unknown. The type 2 diabetes model mice were randomly divided into non-diabetic mice (ND), diabetic mice (DB), and diabetic mice treated with silk fibroin hydrolysate (DB-SFH). The results showed that SFH significantly decreased fasting blood glucose and hemoglobin A1c (HbA1c). The oral glucose tolerance and insulin tolerance were significantly improved in the DB-SFH group. The DB-SFH group exhibited increased superoxide dismutase (SOD) activity in the plasma, as well as increased Mn-SOD and CuZn-SOD activities in the pancreatic islets. Furthermore, the pancreatic islet cells' death was decreased in the DB-SFH group. In the DB-SFH group, the protein expression of caspase-3 was significantly decreased compared with the DB group. The expression of the Nkx6.1 and Pdx1 proteins were increased in the DB-SFH group. The results suggest that SFH prevents the degeneration of pancreatic islets via increasing SOD while hyperglycemia is alleviated by maintaining beta cell mass in type 2 diabetes model mice.

          Related collections

          Author and article information

          Journal
          Biochemical and Biophysical Research Communications
          Biochemical and Biophysical Research Communications
          Elsevier BV
          0006291X
          November 2017
          November 2017
          : 493
          : 1
          : 115-119
          Article
          10.1016/j.bbrc.2017.09.066
          28919426
          0b1aec2c-26c9-44ef-995d-8e553c974ea7
          © 2017

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article