7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          USP13 has been reported to be involved in the tumorigenesis of human cancers, however, its functional role and regulatory mechanisms in bladder cancer (BC) remain unclear.

          Methods

          q-RT-PCR was performed to examine the expression of miR-130b-3p, miR-301b-3p and USP13 in BC tissue samples. Western blot, q-RT-PCR, bioinformatic analysis and dual-luciferase reporter assay were conducted to identify the regulatory function of miR-130b-3p/301b-3p for USP13. Co-immunoprecipitation assay was performed to assess the interaction between USP13 and PTEN protein. Cell-counting-kit 8, colony formation assay and transwell assay were performed to value the proliferative, migrative and invasive capacities of BC cells in vitro. Mouse xenograft model of BC cells was established to verify the function of USP13 in vivo. Immunohistochemistry was performed to identify the protein expression of USP13, NF-kB p65 or PTEN in clinical/xenograft tumor tissues.

          Results

          Our present study reveals that USP13 functions as a tumor suppressor by interacting with PTEN protein and increasing its expression in bladder cancer. We found that loss of USP13 led to the downregulation of PTEN and promoted proliferative, invasive and migrative capacities of bladder cancer cells. Furthermore, we discovered that USP13 was a common target of miR-130b-3p and miR-301b-3p, and the miR-130b/301b cluster, which could be transcriptionally upregulated by NF-kB. Our data demonstrated that NF-kB activation decreased expression level of USP13 and PTEN, and promoted the tumorigenesis phenotypes of BC cells. In addition, reintroduction of USP13 partially rescued PTEN expression as well as the oncogenesis trend caused by NF-kB.

          Conclusion

          We reported a potential regulatory loop that the NF-kB-induced miR-130b/301b overexpression decreased USP13 expression and subsequently resulted in the downregulation of PTEN protein and promoted tumorigenesis of bladder cancer. Moreover, NF-kB-mediated PTEN downregulation is very likely to facilitate the full activation of NF-kB.

          Electronic supplementary material

          The online version of this article (10.1186/s13046-019-1262-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.

          Mapping of homozygous deletions on human chromosome 10q23 has led to the isolation of a candidate tumor suppressor gene, PTEN, that appears to be mutated at considerable frequency in human cancers. In preliminary screens, mutations of PTEN were detected in 31% (13/42) of glioblastoma cell lines and xenografts, 100% (4/4) of prostate cancer cell lines, 6% (4/65) of breast cancer cell lines and xenografts, and 17% (3/18) of primary glioblastomas. The predicted PTEN product has a protein tyrosine phosphatase domain and extensive homology to tensin, a protein that interacts with actin filaments at focal adhesions. These homologies suggest that PTEN may suppress tumor cell growth by antagonizing protein tyrosine kinases and may regulate tumor cell invasion and metastasis through interactions at focal adhesions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitination regulates PTEN nuclear import and tumor suppression.

            The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1.

              The aim of T-cell-based immune therapy for cancer has been to generate durable clinical benefit for patients. Following a generation of therapies that largely showed minimal activity, substantial toxicity, and no biomarkers to identify which patients benefit from treatment, early studies are showing signs that programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) inhibitors are highly active. Preclinical and early data from clinical studies suggest that targeting this pathway can induce durable clinical responses in patients in a variety of tumor types, including lung and colon cancer. Furthermore, correlations with tumor PD-L1 expression may enable selection of patients most likely to benefit from treatment. The emerging data not only offer the hope of better cancer therapy but also provide evidence that changes our understanding of how the host immune system interacts with human cancer. ©2012 AACR.
                Bookmark

                Author and article information

                Contributors
                manxj1983@163.com
                piao2008220@hotmail.com
                linxuyong@hotmail.com
                kongchuize_cmu@sina.cn
                cui_ruby@hotmail.com
                13804064945@163.com
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                14 June 2019
                14 June 2019
                2019
                : 38
                : 259
                Affiliations
                [1 ]GRID grid.412636.4, Department of Urology, , First hospital of China Medical University, ; No.155 Nanjing north Road, Shenyang, 110001 Liaoning China
                [2 ]ISNI 0000 0000 9678 1884, GRID grid.412449.e, Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, , China Medical University, ; Shenyang, 110001 China
                Article
                1262
                10.1186/s13046-019-1262-4
                6570860
                31200745
                0afd31ff-b67f-44b2-920d-60b759988a52
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 January 2019
                : 3 June 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: No. 81702505
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Oncology & Radiotherapy
                usp13,pten,nf-kb,bladder cancer
                Oncology & Radiotherapy
                usp13, pten, nf-kb, bladder cancer

                Comments

                Comment on this article