33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fine particulate matter (PM<sub>2.5</sub>) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei, -6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Book: not found

          Applied Regression Analysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effect of climate change on air quality

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China

              Significance Drastic air pollution control in China since 2013 has achieved sharp decreases in fine particulate matter (PM2.5), but ozone pollution has not improved. After removing the effect of meteorological variability, we find that surface ozone has increased in megacity clusters of China, notably Beijing and Shanghai. The increasing trend cannot be simply explained by changes in anthropogenic precursor [NOx and volatile organic compound (VOC)] emissions, particularly in North China Plain (NCP). The most important cause of the increasing ozone in NCP appears to be the decrease in PM2.5, slowing down the sink of hydroperoxy radicals and thus speeding up ozone production. Decreasing ozone in the future will require a combination of NOx and VOC emission controls to overcome the effect of decreasing PM2.5.
                Bookmark

                Author and article information

                Contributors
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2019
                August 29 2019
                : 19
                : 16
                : 11031-11041
                Article
                10.5194/acp-19-11031-2019
                0af021b7-aba9-4590-839f-663144b9c1a0
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article