19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Global distribution of microbial abundance and biomass in subseafloor sediment.

          The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9⋅10(29) cells [corresponding to 4.1 petagram (Pg) C and ∼0.6% of Earth's total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth's total number of microbes and total living biomass to be, respectively, 50-78% and 10-45% lower than previous estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A serpentinite-hosted ecosystem: the Lost City hydrothermal field.

            The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abiogenic hydrocarbon production at lost city hydrothermal field.

              Low-molecular-weight hydrocarbons in natural hydrothermal fluids have been attributed to abiogenic production by Fischer-Tropsch type (FTT) reactions, although clear evidence for such a process has been elusive. Here, we present concentration, and stable and radiocarbon isotope, data from hydrocarbons dissolved in hydrogen-rich fluids venting at the ultramafic-hosted Lost City Hydrothermal Field. A distinct "inverse" trend in the stable carbon and hydrogen isotopic composition of C1 to C4 hydrocarbons is compatible with FTT genesis. Radiocarbon evidence rules out seawater bicarbonate as the carbon source for FTT reactions, suggesting that a mantle-derived inorganic carbon source is leached from the host rocks. Our findings illustrate that the abiotic synthesis of hydrocarbons in nature may occur in the presence of ultramafic rocks, water, and moderate amounts of heat.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                01 March 2017
                2017
                : 8
                : 308
                Affiliations
                [1] 1Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI, USA
                [2] 2Department of Biology, University of Utah, Salt Lake City UT, USA
                [3] 3SETI Institute, Mountain View CA, USA
                [4] 4Department of Geosciences, University of Rhode Island, Kingston RI, USA
                [5] 5Exobiology Branch, NASA Ames Research Center, Moffett Field CA, USA
                [6] 6Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
                Author notes

                Edited by: Cody Sheik, University of Minnesota Duluth, USA

                Reviewed by: Thomas L. Kieft, New Mexico Institute of Mining and Technology, USA; Wesley Douglas Swingley, Northern Illinois University, USA

                *Correspondence: Katrina I. Twing, katrinatwing@ 123456gmail.com

                This article was submitted to Microbiological Chemistry and Geomicrobiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.00308
                5331062
                28298908
                0add8696-c676-4bc2-b721-deee8282f327
                Copyright © 2017 Twing, Brazelton, Kubo, Hyer, Cardace, Hoehler, McCollom and Schrenk.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 January 2017
                : 14 February 2017
                Page count
                Figures: 5, Tables: 4, Equations: 0, References: 66, Pages: 16, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                serpentinization,alkaliphile,extremophile,groundwater,borehole
                Microbiology & Virology
                serpentinization, alkaliphile, extremophile, groundwater, borehole

                Comments

                Comment on this article