1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ovarian microenvironment is critical for follicular development and oocyte maturation. Maternal conditions, including polycystic ovary syndrome (PCOS), endometriosis, and aging, may compromise the ovarian microenvironment, follicular development, and oocyte quality. Chronic low-grade inflammation can induce oxidative stress and tissue fibrosis in the ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels are often elevated in follicular fluids. In women with obesity and PCOS, hyperandrogenemia and insulin resistance induce ovarian chronic low-grade inflammation, thereby disrupting follicular development by increasing oxidative stress. In endometriosis, ovarian endometrioma-derived iron overload can induce chronic inflammation and oxidative stress, leading to ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging), senescent cells may secrete senescence-associated secretory phenotype factors, causing chronic inflammation and oxidative stress in the ovary. Therefore, controlling chronic low-grade inflammation and fibrosis in the ovary would present a novel therapeutic strategy for improving the follicular microenvironment and minimizing ovarian dysfunction.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.

            Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ROS function in redox signaling and oxidative stress.

              Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS also act as signaling molecules in the maintenance of physiological functions--a process termed redox biology. In this review we discuss the two faces of ROS--redox biology and oxidative stress--and their contribution to both physiological and pathological conditions. Redox biology involves a small increase in ROS levels that activates signaling pathways to initiate biological processes, while oxidative stress denotes high levels of ROS that result in damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis, given that the opposite effect is observed at low levels compared with that seen at high levels. Here, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/1264015Role: Role:
                URI : https://loop.frontiersin.org/people/2145248Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                URI : https://loop.frontiersin.org/people/2164129Role: Role:
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                13 December 2023
                2023
                : 14
                : 1324429
                Affiliations
                [1] 1 Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui , Fukui, Japan
                [2] 2 Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University , Fukui, Japan
                [3] 3 Department of Obstetrics and Gynecology, Ishikawa Prefectural Central Hospital , Ishikawa, Japan
                Author notes

                Edited by: Takashi Minegishi, Gunma University, Japan

                Reviewed by: Miyuki Harada, The University of Tokyo, Japan

                Takashi Yazawa, Asahikawa Medical University, Japan

                Akira Iwase, Gunma University, Japan

                Fardin Amidi, Tehran University of Medical Sciences, Iran

                *Correspondence: Makoto Orisaka, orisaka@ 123456u-fukui.ac.jp
                Article
                10.3389/fendo.2023.1324429
                10773729
                38192421
                0abf2d7a-587a-41df-803c-af61afc00c1d
                Copyright © 2023 Orisaka, Mizutani, Miyazaki, Shirafuji, Tamamura, Fujita, Tsuyoshi and Yoshida

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 October 2023
                : 01 December 2023
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 127, Pages: 8, Words: 3113
                Funding
                Funded by: Japan Society for the Promotion of Science , doi 10.13039/501100001691;
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by JSPS KAKENHI (18K09224 and 22K09592).
                Categories
                Endocrinology
                Mini Review
                Custom metadata
                Reproduction

                Endocrinology & Diabetes
                aging,endometriosis,follicular microenvironment,inflammation,ovarian dysfunction,polycystic ovarian syndrome

                Comments

                Comment on this article