6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comparative study on the antifungal effect of potassium sorbate, chitosan, and nano-chitosan against Rhodotorula mucilaginosa and Candida albicans in skim milk acid-coagulated (Karish) cheese

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aim:

          Yeasts are common contaminants in the cheese industry, which frequently arise from raw milk, the surrounding environment, and equipment, resulting in economic losses in addition to health hazards. This study aimed to compare the antifungal effect of chitosan and nano-chitosan as natural preservatives with a commonly used chemical preservative (potassium sorbate) against Rhodotorula mucilaginosa and Candida albicans.

          Materials and Methods:

          Laboratory Karish cheese was manufactured with the addition of potassium sorbate, chitosan, nano-chitosan, and their combinations at different concentrations. The survival of R. mucilaginosa and C. albicans was monitored in different treatments (CR, PR1, PR2, CR1, CR2, NR1, NR2, MR, CC, PC1, PC2, CC1, CC2, NC1, NC2, MC) during storage in a refrigerator with continuous measurement of pH. The impact of using these antifungal agents on the organoleptic parameters of Karish cheese during storage was also evaluated.

          Results:

          There was a significant decrease in the count of yeasts in all treatments from the 3 rd day of storage, while the mixture of 0.1% potassium sorbate (MR) and 2% chitosan (MC) improved the antifungal effect of chitosan with a lower potassium sorbate concentration and showed the best antifungal effects against both R. mucilaginosa and C. albicans. This combination reduced the yeast count from 8.92 and 9.57 log 10 colony-forming unit (CFU)/g in MR and MC treatments, respectively, until it became undetectable on the 9 th day of storage, which was earlier than for all other treatments. It was noted that the addition of chitosan nanoparticles (ChNPs) at either 0.25% (NR1 and NC1) or 0.5% (NR2 and NC2) during the manufacturing of Karish cheese significantly lowered the counts of R. mucilaginosa and C. albicans compared with chitosan with a higher molecular weight, but significantly lower than potassium sorbate until 6 th day of storage as all treatments of chitosan nanoparticles became significantly higher than potassium sorbate treatments. After 9 days of storage, NR2 and NC2 treatments showed the most significant decreases in count (3.78 and 4.93 log 10 CFU/g, respectively), indicating better stability of ChNPs. At the end of the storage period, PR2, PC2, CR2, and CC2 showed significantly high pH values among the groups of 4.8, 5.0, 4.8, and 5.1, respectively. The overall acceptability was significantly higher in treated Karish cheese samples than in the control group, especially at the end of the storage period.

          Conclusion:

          Potassium sorbate, chitosan, and ChNPs are effective antifungal preservatives against R. mucilaginosa and C. albicans. In addition, the combination of chitosan with potassium sorbate showed synergistic antifungal activity. These additives also preserve the sensorial criteria longer than for cheese without preservatives.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Preparation and antibacterial activity of chitosan nanoparticles.

          Chitosan nanoparticles, such as those prepared in this study, may exhibit potential antibacterial activity as their unique character. The purpose of this study was to evaluate the in vitro antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against various microorganisms. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. Copper ions were adsorbed onto the chitosan nanoparticles mainly by ion-exchange resins and surface chelation to form copper-loaded nanoparticles. The physicochemical properties of the nanoparticles were determined by size and zeta potential analysis, atomic force microscopy (AFM), FTIR analysis, and XRD pattern. The antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against E. coli, S. choleraesuis, S. typhimurium, and S. aureus was evaluated by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results show that chitosan nanoparticles and copper-loaded nanoparticles could inhibit the growth of various bacteria tested. Their MIC values were less than 0.25 microg/mL, and the MBC values of nanoparticles reached 1 microg/mL. AFM revealed that the exposure of S. choleraesuis to the chitosan nanoparticles led to the disruption of cell membranes and the leakage of cytoplasm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Perspectives on the use of organic acids and short chain fatty acids as antimicrobials.

            SC Ricke (2003)
            Organic acids have a long history of being utilized as food additives and preservatives for preventing food deterioration and extending the shelf life of perishable food ingredients. Specific organic acids have also been used to control microbial contamination and dissemination of foodborne pathogens in preharvest and postharvest food production and processing. The antibacterial mechanism(s) for organic acids are not fully understood, and activity may vary depending on physiological status of the organism and the physicochemical characteristics of the external environment. An emerging potential problem is that organic acids have been observed to enhance survivability of acid sensitive pathogens exposed to low pH by induction of an acid tolerance response and that acid tolerance may be linked to increased virulence. Although this situation has implications regarding the use of organic acids, it may only apply to circumstances in which reduced acid levels have induced resistance and virulence mechanisms in exposed organisms. Evaluating effectiveness of organic acids for specific applications requires more understanding general and specific stress response capabilities of foodborne pathogens. Development and application of molecular tools to study pathogen behavior in preharvest and postharvest food production environments will enable dissection of specific bacterial genetic regulation involved in response to organic acids. This could lead to the development of more targeted strategies to control foodborne pathogens with organic acids.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chitosan application for active bio-based films production and potential in the food industry: Review

                Bookmark

                Author and article information

                Journal
                Vet World
                Vet World
                Veterinary World
                Veterinary World (India )
                0972-8988
                2231-0916
                September 2023
                23 September 2023
                : 16
                : 9
                : 1991-2001
                Affiliations
                [1 ]Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
                [2 ]Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
                [3 ]Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
                Author notes
                Article
                Vetworld-16-1991
                10.14202/vetworld.2023.1991-2001
                10583870
                37859954
                0aa65c0c-d475-40b5-bc76-7a69954b79b4
                Copyright: © Awaad, et al.

                Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 June 2023
                : 01 September 2023
                Categories
                Research Article

                candida,chitosan,nano-chitosan,karish cheese,potassium sorbate,rhodotorula

                Comments

                Comment on this article