Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
O agrupamento de dados de solo e de plantas pode ser utilizado para definir zonas de manejo. O objetivo do estudo foi identificar zonas de manejo usando o algoritmo de grupamento fuzzy c-means com base na variabilidade espacial e temporal dos atributos do solo e da produtividade de milho (PM). A área de estudo (18 por 250 m) está localizada em Jaboticabal-SP. A produtividade de milho foi medida em 100 células amostrais de 4,5 x 10 m, dispostas em quatro transectos (25 pontos por transecto), em cinco anos agrícolas, no período de 2001 a 2010. O procedimento MIXED do SAS foi utilizado para identificar quais variáveis mais influenciaram a variabilidade espacial da PM ao longo dos cinco anos de estudo. A saturação por bases (V) foi a variável que melhor se relacionou com a PM; portanto, modelos de semivariogramas foram ajustados aos dados destas variáveis e, posteriormente, interpolados pelo método da krigagem. O software Management Zone Analyst foi utilizado para realizar o agrupamento com o algoritmo fuzzy c-means. O número ótimo de zonas de manejo alterara-se ao longo do tempo, assim como o grau de similaridade espacial entre as zonas de manejo de V e da PM. Portanto, é de fundamental importância levar em consideração a variabilidade temporal da produtividade das culturas e dos atributos do solo para obter zonas de manejo com maior acurácia.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.