36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The SWISS-MODEL Repository and associated resources

          SWISS-MODEL Repository (http://swissmodel.expasy.org/repository/) is a database of 3D protein structure models generated by the SWISS-MODEL homology-modelling pipeline. The aim of the SWISS-MODEL Repository is to provide access to an up-to-date collection of annotated 3D protein models generated by automated homology modelling for all sequences in Swiss-Prot and for relevant models organisms. Regular updates ensure that target coverage is complete, that models are built using the most recent sequence and template structure databases, and that improvements in the underlying modelling pipeline are fully utilised. As of September 2008, the database contains 3.4 million entries for 2.7 million different protein sequences from the UniProt database. SWISS-MODEL Repository allows the users to assess the quality of the models in the database, search for alternative template structures, and to build models interactively via SWISS-MODEL Workspace (http://swissmodel.expasy.org/workspace/). Annotation of models with functional information and cross-linking with other databases such as the Protein Model Portal (http://www.proteinmodelportal.org) of the PSI Structural Genomics Knowledge Base facilitates the navigation between protein sequence and structure resources.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pentatricopeptide repeat proteins: a socket set for organelle gene expression.

            Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are particularly prevalent in terrestrial plants. Although the PPR protein family was only recognized eight years ago, it is already clear that these proteins have a range of essential functions in post-transcriptional processes (including RNA editing, RNA splicing, RNA cleavage and translation) within mitochondria and chloroplasts. Several PPR proteins have been shown to act as fertility restorer genes in commercially important cytoplasmic male sterility systems. Here, we discuss several recent papers that cover their evolutionary history and molecular mode of action. We use these new data to propose hypotheses for their physiological roles that could explain why PPR proteins are so numerous in terrestrial plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The endosymbiotic origin, diversification and fate of plastids.

              Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                June 2014
                31 May 2014
                31 May 2014
                : 6
                : 6
                : 1408-1422
                Affiliations
                1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
                2DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
                3Department of Marine Sciences, University of Connecticut
                Author notes
                *Corresponding author: E-mail: msutada@ 123456gmail.com ; eiichi@ 123456oist.jp .

                Associate editor: Shu-Miaw Chaw

                Data deposition: Plastid minicircle sequences reported in this article have been deposited at GenBank under the accessions JX094304–JX094335.

                Article
                evu109
                10.1093/gbe/evu109
                4079212
                24881086
                0a9d3a8c-a60e-490b-95b7-665d2f192b51
                © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 May 2014
                Page count
                Pages: 13
                Categories
                Research Article

                Genetics
                rna editing,plastid-associated genes,dinoflagellate,symbiodinium minutum,hydropathy,light-harvesting complex proteins,minicircles

                Comments

                Comment on this article