13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in Pichia pastoris

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The growth of yeasts in culture media can be affected by many factors. For example, methanol can be metabolized by other pathways to produce ethanol, which acts as an inhibitor of the heterologous protein production pathway; oxygen concentration can generate aerobic or anaerobic environments and affects the fermentation rate; and temperature affects the central carbon metabolism and stress response protein folding. The main goal of this study was determine the implication of free fatty acids on the production of heterologous proteins in different culture conditions in cultures of Pichia pastoris. We evaluated cell viability using propidium iodide by flow cytometry and thiobarbituric acid reactive substances to measure cell membrane damage. The results indicate that the use of low temperatures and low methanol concentrations favors the decrease in lipid peroxidation in the transition phase from glycerol to methanol. In addition, a temperature of 14 °C + 1%M provided the most stable viability. By contrast, the temperature of 18 °C + 1.5%M favored the production of a higher antibody fragment concentration. In summary, these results demonstrate that the decrease in lipid peroxidation is related to an increased production of free fatty acids.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial oxidative stress: implications for cell death.

          In addition to the established role of the mitochondria in energy metabolism, regulation of cell death has emerged as a second major function of these organelles. This seems to be intimately linked to their generation of reactive oxygen species (ROS), which have been implicated in mtDNA mutations, aging, and cell death. Mitochondrial regulation of apoptosis occurs by mechanisms, which have been conserved through evolution. Thus, many lethal agents target the mitochondria and cause release of cytochrome c and other pro-apoptotic proteins into the cytoplasm. Cytochrome c release is initiated by the dissociation of the hemoprotein from its binding to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and increases the level of soluble cytochrome c in the intermembrane space. Subsequent release of the hemoprotein occurs by pore formation mediated by pro-apoptotic Bcl-2 family proteins, or by Ca(2+) and ROS-triggered mitochondrial permeability transition, although the latter pathway might be more closely associated with necrosis. Taken together, these findings have placed the mitochondria in the focus of current cell death research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytotoxicity and genotoxicity of lipid-oxidation products.

            The autoxidation of unsaturated lipids contained in oils, fats, and food and the endogenous oxidative degradation of membrane lipids by lipid peroxidation result in the formation of a very complex mixture of lipid hydroperoxides, chain-cleavage products, and polymeric material. Experimental animal studies and biochemical investigations lend support to the hypothesis that lipid-oxidation products, ingested with food or produced endogenously, represent a health risk. The oral toxicity of oxidized lipids is unexpectedly low. Chronic uptake of large amounts of such materials increases tumor frequency and incidence of atherosclerosis in animals. 4-Hydroxynonenal, a chain-cleavage product resulting from omega 6 fatty acids, disturbs gap-junction communications in cultured endothelial cells and induces several genotoxic effects in hepatocytes and lymphocytes. Although the concentrations of the aldehyde needed to produce these effects are in the range expected to occur in vivo, their pathological significance is far from clear. Recent findings strongly suggest that in vivo modification of low-density lipoprotein by certain lipid-peroxidation products (eg, 4-hydroxynonenal and malonaldehyde) renders this lipoprotein more atherogenic and causes foam-cell formation. Proteins modified by 4-hydroxynonenal and malonaldehyde were detected by immunological techniques in atherosclerotic lesions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redox mechanisms in hepatic chronic wound healing and fibrogenesis

              Reactive oxygen species (ROS) generated within cells or, more generally, in a tissue environment, may easily turn into a source of cell and tissue injury. Aerobic organisms have developed evolutionarily conserved mechanisms and strategies to carefully control the generation of ROS and other oxidative stress-related radical or non-radical reactive intermediates (that is, to maintain redox homeostasis), as well as to 'make use' of these molecules under physiological conditions as tools to modulate signal transduction, gene expression and cellular functional responses (that is, redox signalling). However, a derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, can play a significant role in the pathogenesis of major human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis. This review has been designed to first offer a critical introduction to current knowledge in the field of redox research in order to introduce readers to the complexity of redox signalling and redox homeostasis. This will include ready-to-use key information and concepts on ROS, free radicals and oxidative stress-related reactive intermediates and reactions, sources of ROS in mammalian cells and tissues, antioxidant defences, redox sensors and, more generally, the major principles of redox signalling and redox-dependent transcriptional regulation of mammalian cells. This information will serve as a basis of knowledge to introduce the role of ROS and other oxidative stress-related intermediates in contributing to essential events, such as the induction of cell death, the perpetuation of chronic inflammatory responses, fibrogenesis and much more, with a major focus on hepatic chronic wound healing and liver fibrogenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Braz J Microbiol
                Braz. J. Microbiol
                Brazilian Journal of Microbiology
                Elsevier
                1517-8382
                1678-4405
                12 April 2018
                Oct-Dec 2018
                12 April 2018
                : 49
                : 4
                : 856-864
                Affiliations
                [a ]Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile
                [b ]Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
                Author notes
                [* ] Corresponding author. jorge.farias@ 123456ufrontera.cl
                Article
                S1517-8382(17)30603-2
                10.1016/j.bjm.2018.03.008
                6175731
                0a84fd74-9866-45bb-89d6-d67a350609b0
                © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 July 2017
                : 21 March 2018
                Categories
                Research Paper

                lipid peroxidation,pyruvate pathway,yeast
                lipid peroxidation, pyruvate pathway, yeast

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content138

                Cited by4

                Most referenced authors332