29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Canonical RTK-Ras-ERK signaling and related alternative pathways

      research-article
      WormBook : the online review of C. elegans biology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.

          Related collections

          Most cited references235

          • Record: found
          • Abstract: found
          • Article: not found

          Ras oncogenes: split personalities.

          Extensive research on the Ras proteins and their functions in cell physiology over the past 30 years has led to numerous insights that have revealed the involvement of Ras not only in tumorigenesis but also in many developmental disorders. Despite great strides in our understanding of the molecular and cellular mechanisms of action of the Ras proteins, the expanding roster of their downstream effectors and the complexity of the signalling cascades that they regulate indicate that much remains to be learnt.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions.

            The extracellular signal-regulated kinase (ERK) cascade is a central pathway that transmits signals from many extracellular agents to regulate cellular processes such as proliferation, differentiation and cell cycle progression. The signaling via the ERK cascade is mediated by sequential phosphorylation and activation of protein kinases in the different tiers of the cascade. Although the main core phosphorylation chain of the cascade includes Raf kinases, MEK1/2, ERK1/2 (ERKs) and RSKs, other alternatively spliced forms and distinct components exist in the different tiers, and participate in ERK signaling under specific conditions. These components enhance the complexity of the ERK cascade and thereby, enable the wide variety of functions that are regulated by it. Another factor that is important for the dissemination of ERKs' signals is the multiplicity of the cascade's substrates, which include transcription factors, protein kinases and phosphatases, cytoskeletal elements, regulators of apoptosis, and a variety of other signaling-related molecules. About 160 substrates have already been discovered for ERKs, and the list of these substrates, as well as the function and mechanism of activation of representative substrates, are described in the current review. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Understanding of these processes may provide a full picture of the distinct, and even opposing cellular processes that are regulated by the ERK cascade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulating the regulator: post-translational modification of RAS.

              RAS proteins are monomeric GTPases that act as binary molecular switches to regulate a wide range of cellular processes. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which regulate the activation state of RAS without covalently modifying it. By contrast, post-translational modifications (PTMs) of RAS proteins direct them to various cellular membranes and, in some cases, modulate GTP-GDP exchange. Important RAS PTMs include the constitutive and irreversible remodelling of its carboxy-terminal CAAX motif by farnesylation, proteolysis and methylation, reversible palmitoylation, and conditional modifications, including phosphorylation, peptidyl-prolyl isomerisation, monoubiquitylation, diubiquitylation, nitrosylation, ADP ribosylation and glucosylation.
                Bookmark

                Author and article information

                Contributors
                Journal
                101303985
                33883
                WormBook
                WormBook
                WormBook : the online review of C. elegans biology
                1551-8507
                27 December 2013
                11 July 2013
                09 January 2014
                : 10.1895/wormbook.1.80.2
                Affiliations
                Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104-6145, USA
                Author notes
                [§ ]To whom correspondence should be addressed. sundaram@ 123456mail.med.upenn.edu
                Article
                NIHMS542217
                10.1895/wormbook.1.80.2
                3885983
                23908058
                0a36cb42-1b0f-4b9d-816e-188f85d9ceb8
                Copyright: © 2013 Meera V. Sundaram.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM058540 || GM
                Categories
                Article

                Comments

                Comment on this article