Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AAV Gene Therapy Utilizing Glycosylation-Independent Lysosomal Targeting Tagged GAA in the Hypoglossal Motor System of Pompe Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pompe disease is caused by mutations in the gene encoding the lysosomal glycogen-metabolizing enzyme, acid-alpha glucosidase (GAA). Tongue myofibers and hypoglossal motoneurons appear to be particularly susceptible in Pompe disease. Here we used intramuscular delivery of adeno-associated virus serotype 9 (AAV9) for targeted delivery of an enhanced form of GAA to tongue myofibers and motoneurons in 6-month-old Pompe ( Gaa −/− ) mice. We hypothesized that addition of a glycosylation-independent lysosomal targeting tag to the protein would result in enhanced expression in tongue (hypoglossal) motoneurons when compared to the untagged GAA. Mice received an injection into the base of the tongue with AAV9 encoding either the tagged or untagged enzyme; tissues were harvested 4 months later. Both AAV9 constructs effectively drove GAA expression in lingual myofibers and hypoglossal motoneurons. However, mice treated with the AAV9 construct encoding the modified GAA enzyme had a >200% increase in the number of GAA-positive motoneurons as compared to the untagged GAA (p < 0.008). Our results confirm that tongue delivery of AAV9-encoding GAA can effectively target tongue myofibers and associated motoneurons in Pompe mice and indicate that the effectiveness of this approach can be improved by addition of the glycosylation-independent lysosomal targeting tag.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors.

          Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml. Copyright 2002 Elsevier Science (USA)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II.

            We have used gene targeting to create a mouse model of glycogen storage disease type II, a disease in which distinct clinical phenotypes present at different ages. As in the severe human infantile disease (Pompe Syndrome), mice homozygous for disruption of the acid alpha-glucosidase gene (6(neo)/6(neo)) lack enzyme activity and begin to accumulate glycogen in cardiac and skeletal muscle lysosomes by 3 weeks of age, with a progressive increase thereafter. By 3.5 weeks of age, these mice have markedly reduced mobility and strength. They grow normally, however, reach adulthood, remain fertile, and, as in the human adult disease, older mice accumulate glycogen in the diaphragm. By 8-9 months of age animals develop obvious muscle wasting and a weak, waddling gait. This model, therefore, recapitulates critical features of both the infantile and the adult forms of the disease at a pace suitable for the evaluation of enzyme or gene replacement. In contrast, in a second model, mutant mice with deletion of exon 6 (Delta6/Delta6), like the recently published acid alpha-glucosidase knockout with disruption of exon 13 (Bijvoet, A. G., van de Kamp, E. H., Kroos, M., Ding, J. H., Yang, B. Z., Visser, P., Bakker, C. E., Verbeet, M. P., Oostra, B. A., Reuser, A. J. J., and van der Ploeg, A. T. (1998) Hum. Mol. Genet. 7, 53-62), have unimpaired strength and mobility (up to 6.5 months of age) despite indistinguishable biochemical and pathological changes. The genetic background of the mouse strains appears to contribute to the differences among the three models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The emerging phenotype of late-onset Pompe disease: A systematic literature review.

              Pompe disease is an autosomal recessive disorder caused by deficiency of the lysosomal glycogen-hydrolyzing enzyme acid α-glucosidase (GAA). The adult-onset form, late-onset Pompe disease (LOPD), has been characterized by glycogen accumulation primarily in skeletal, cardiac, and smooth muscles, causing weakness of the proximal limb girdle and respiratory muscles. However, increased scientific study of LOPD continues to enhance understanding of an evolving phenotype.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Methods Clin Dev
                Mol Ther Methods Clin Dev
                Molecular Therapy. Methods & Clinical Development
                American Society of Gene & Cell Therapy
                2329-0501
                31 August 2019
                13 December 2019
                31 August 2019
                : 15
                : 194-203
                Affiliations
                [1 ]Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
                [2 ]Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
                [3 ]Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
                [4 ]Mcknight Brain Institute, University of Florida, Gainesville, FL 32610, USA
                [5 ]Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
                [6 ]Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
                Author notes
                []Corresponding author: David D. Fuller, Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA. ddf@ 123456phhp.ufl.edu
                Article
                S2329-0501(19)30089-0
                10.1016/j.omtm.2019.08.009
                6807287
                31660421
                0a2def99-06df-4a52-b9d9-cf22c74116a6
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 6 June 2019
                : 23 August 2019
                Categories
                Article

                hypoglossal,tongue,pompe,gene therapy,gaa,aav,lysosomal storage disease,motoneuron,genioglossus,respiratory

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content449

                Cited by10

                Most referenced authors953