7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: unexpected chemical compositions discovered by Bayesian optimization

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesoporous PtPdAu alloy films with the highest electrocatalytic activity are discovered by the active learning approach using Bayesian optimization.

          Abstract

          There is growing interest in developing mesoporous metallic alloys for electrochemical applications such as catalysts in fuel cells and batteries. As is well known, the chemical compositions of alloys can significantly affect their electrochemical properties. Although tuning the chemical compositions of mesoporous metallic alloys for enhancing the electrochemical activity has been reported, they have mostly been limited to binary components partly because experimental exploration over possible multi-compositional spaces is a time-consuming process. Here, we describe, for the first time, the application of the active learning scheme using Bayesian optimization for the exploratory search of the chemical compositions of mesoporous trimetallic PtPdAu alloys with optimum catalytic activity in the electrocatalytic oxidation of methanol. Unexpectedly, it was found that the PtPdAu alloys yielding the highest catalytic activity contain only a small percentage of Au. These compositions were discovered by performing only 47 experiments, less than 1% of all possible compositions in our experimental design. Our current approach is highly efficient and would be applicable to any system to accelerate the discovery of novel materials.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Opportunities and challenges for a sustainable energy future.

          Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications.

            Bimetallic nanocrystals (NCs) with core/shell, heterostructure, or inter-metallic and alloyed structures are emerging as more important materials than monometallic NCs. They are expected to display not only a combination of the properties associated with two distinct metals, but also new properties and capabilities due to a synergy between the two metals. More importantly, bimetallic NCs usually show composition-dependent surface structure and atomic segregation behavior, and therefore more interesting applied potentials in various fields including electronics, engineering, and catalysis. Compared with monometallic NCs, preparation of bimetallic NCs is much more complicated and difficult to be achieved. In recent years, researchers from many groups have made great efforts in this area. This review highlights the recent progress in the chemical synthesis of bimetallic NCs. The control over morphology, size, composition, and structure of bimetallic NCs as well as the exploration of their properties and applications are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature.

              Gold (Au) is an interesting catalytic material because of its ability to catalyze reactions, such as partial oxidations, with high selectivities at low temperatures; but limitations arise from the low O2 dissociation probability on Au. This problem can be overcome by using Au nanoparticles supported on suitable oxides which, however, are prone to sintering. Nanoporous Au, prepared by the dealloying of AuAg alloys, is a new catalyst with a stable structure that is active without any support. It catalyzes the selective oxidative coupling of methanol to methyl formate with selectivities above 97% and high turnover frequencies at temperatures below 80 degrees C. Because the overall catalytic characteristics of nanoporous Au are in agreement with studies on Au single crystals, we deduced that the selective surface chemistry of Au is unaltered but that O2 can be readily activated with this material. Residual silver is shown to regulate the availability of reactive oxygen.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                July 14 2020
                2020
                : 8
                : 27
                : 13532-13540
                Affiliations
                [1 ]Australian Institute for Bioengineering and Nanotechnology (AIBN)
                [2 ]The University of Queensland
                [3 ]Brisbane
                [4 ]Australia
                [5 ]Research and Services Division of Materials Data and Integrated System (MaDIS)
                [6 ]National Institute for Materials Science (NIMS)
                [7 ]Tsukuba
                [8 ]Japan
                [9 ]School of Mechanical & Mining Engineering
                [10 ]Faculty of Science and Engineering
                [11 ]Waseda University
                [12 ]Tokyo
                [13 ]International Center for Materials Nanoarchitectonics (MANA)
                Article
                10.1039/D0TA04096G
                0a1a9211-58cf-47f5-a7c3-4730c5046d30
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article