61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

      review-article
      1 , 2 , *
      Viruses
      MDPI
      hepatitis B virus, cccDNA, HBV minichromosome, DNA repair, DNA damage response, HBV cure

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus

          Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157–165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV. DOI: http://dx.doi.org/10.7554/eLife.00049.001
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor.

            Chronic hepatitis B virus infection is a leading cause of cirrhosis and liver cancer. Hepatitis B virus encodes the regulatory HBx protein whose primary role is to promote transcription of the viral genome, which persists as an extrachromosomal DNA circle in infected cells. HBx accomplishes this task by an unusual mechanism, enhancing transcription only from extrachromosomal DNA templates. Here we show that HBx achieves this by hijacking the cellular DDB1-containing E3 ubiquitin ligase to target the 'structural maintenance of chromosomes' (Smc) complex Smc5/6 for degradation. Blocking this event inhibits the stimulatory effect of HBx both on extrachromosomal reporter genes and on hepatitis B virus transcription. Conversely, silencing the Smc5/6 complex enhances extrachromosomal reporter gene transcription in the absence of HBx, restores replication of an HBx-deficient hepatitis B virus, and rescues wild-type hepatitis B virus in a DDB1-knockdown background. The Smc5/6 complex associates with extrachromosomal reporters and the hepatitis B virus genome, suggesting a direct mechanism of transcriptional inhibition. These results uncover a novel role for the Smc5/6 complex as a restriction factor selectively blocking extrachromosomal DNA transcription. By destroying this complex, HBx relieves the inhibition to allow productive hepatitis B virus gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication.

              We report the development and isolation of a cell line, termed HepAD38, that replicates human hepatitis B virus (HBV) under conditions that can be regulated with tetracycline. In the presence of the antibiotic, this cell line is free of virus due to the repression of pregenomic (pg) RNA synthesis. Upon removal of tetracycline from the culture medium, the cells express viral pg RNA, accumulate subviral particles in the cytoplasm that contain DNA intermediates characteristic of viral replication, and secrete virus-like particles into the supernatant. Since the HepAD38 cell line can produce high levels of HBV DNA, it should be useful for analyses of the viral replication cycle that depend upon viral DNA synthesis in a synchronized fashion. In addition, this cell line has been formatted into a high-throughput, cell-based assay that permits the large-scale screening of diverse compound libraries for new classes of inhibitors of HBV replication.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                22 May 2017
                May 2017
                : 9
                : 5
                : 125
                Affiliations
                [1 ]Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, D-85764 Munich, Germany; sabrina.schreiner@ 123456tum.de
                [2 ]Dept. of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
                Author notes
                [* ]Correspondence: nassal2@ 123456ukl.uni-freiburg.de ; Tel.: +49-761-270-35070
                Article
                viruses-09-00125
                10.3390/v9050125
                5454437
                28531167
                0a0091c4-bd04-4d90-9b0f-67e6b1c2117f
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 March 2017
                : 18 May 2017
                Categories
                Review

                Microbiology & Virology
                hepatitis b virus,cccdna,hbv minichromosome,dna repair,dna damage response,hbv cure

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content252

                Cited by48

                Most referenced authors1,569