0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noble Metal Nanoparticle-Loaded Porphyrin Hexagonal Submicrowires Composites (M-HW): Photocatalytic Synthesis and Enhanced Photocatalytic Activity

      , , , , , , ,
      Nanomaterials
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surface plasmon resonance (SPR) photocatalysts have attracted considerable attention because of their strong absorption capacity of visible light and enhanced photogenic carrier separation efficiency. However, the separate production of metal nanoparticles (NPs) and semiconductors limits the photogenic charge transfer. As one of the most promising organic photocatalysts, porphyrin self-assemblies with a long-range ordered structure-enhance electron transfer. In this study, plasmonic noble metal-based porphyrin hexagonal submicrowires composites (M-HW) loaded with platinum (Pt), silver (Ag), gold (Au), and palladium (Pd) NPs were synthesized through a simple in situ photocatalytic method. Homogeneous and uniformly distributed metal particles on the M-HW composites enhanced the catalytic or chemical properties of the organic functional nanostructures. Under the same loading of metal NPs, the methyl orange photocatalytic degradation efficiency of Ag-HW [kAg-HW (0.043 min−1)] composite was three times higher than that of HW, followed by Pt-HW [kPt-HW (0.0417 min−1)], Au-HW [kAu-HW (0.0312 min−1)], and Pd-HW [kPd-HW (0.0198 min−1)]. However, the rhodamine B (RhB) and eosin B photocatalytic degradations of Pt-HW were 4 times and 2.6 times those of HW, respectively. Finally, the SPR-induced electron injection, trapping, and recombination processes of the M-HW system were investigated. These results showed that M-HW plasmonic photocatalysts exhibited excellent photocatalytic performances, making them promising materials for photodegrading organic pollutants.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity.

          Plasmonic photocatalysts were successfully synthesized by the modification of TiO2 mesocrystals with Au nanoparticles (NPs) by a simple impregnation method. The Au NP sensitizers show a strong photoelectrochemical response in the visible-light region (400-800 nm) due to their surface plasmon resonance (SPR). The diffuse reflectance spectroscopy measurements on a wide range of time scales (from picoseconds to minutes) demonstrate that a substantial part of electrons, injected from the Au NPs to the TiO2 mesocrystals through the SPR excitation, directionally migrate from the basal surfaces to the edges of the plate-like mesocrystals through the TiO2 nanocrystal networks and are temporally stored there for further reactions. This anisotropic electron flow significantly retarded the charge recombination of these electrons with the holes in the Au NPs, thereby improving the visible-light-photocatalytic activity (for organic-pollutant degradation) by more than an order of magnitude, as compared to that of conventional Au/TiO2 NP systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

            This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Composite titanium dioxide nanomaterials.

                Bookmark

                Author and article information

                Contributors
                Journal
                NANOKO
                Nanomaterials
                Nanomaterials
                MDPI AG
                2079-4991
                February 2023
                February 08 2023
                : 13
                : 4
                : 660
                Article
                10.3390/nano13040660
                09dfb1f7-13ba-46bc-a501-f04565a050b7
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article