18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.

          Related collections

          Most cited references205

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origins and Mechanisms of miRNAs and siRNAs.

            Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA therapeutics: towards a new era for the management of cancer and other diseases

              MicroRNAs (miRNAs) are small non-coding RNAs that can modulate mRNA expression. Insights into the roles of miRNAs in development and disease have led to the development of new therapeutic approaches that are based on miRNA mimics or agents that inhibit their functions (antimiRs), and the first such approaches have entered the clinic. This Review discusses the role of different miRNAs in cancer and other diseases, and provides an overview of current miRNA therapeutics in the clinic.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/980419
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                14 December 2020
                2020
                : 10
                : 605380
                Affiliations
                [1] 1 Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional , Ciudad de México, México
                [2] 2 Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional , Ciudad de México, México
                Author notes

                Edited by: Teresita Padilla-Benavides, Wesleyan University, United States

                Reviewed by: Antonio Di Stasi, University of Alabama at Birmingham, United States; Chiung-Yao Fang, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Taiwan

                *Correspondence: Miguel Ibáñez-Hernández, mibanez@ 123456ipn.mx ; mibanez_01@ 123456hotmail.com

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2020.605380
                7768042
                33381459
                09ded065-40d3-4f07-9605-52641ff37673
                Copyright © 2020 Montaño-Samaniego, Bravo-Estupiñan, Méndez-Guerrero, Alarcón-Hernández and Ibáñez-Hernández

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 September 2020
                : 30 October 2020
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 207, Pages: 18, Words: 9958
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                cancer,gene therapy,targeted treatment,specific promoters,non-viral vectors

                Comments

                Comment on this article