11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Assessing climatic impact on transition from Neanderthal to anatomically modern human population on Iberian Peninsula: a macroscopic perspective

      , , , , , ,
      Science Bulletin
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d9386718e144">The Iberian Peninsula is of particular interest for the research on the Neanderthal (NEA) to anatomically modern human (AMH) population transition. The AMHs arrived in Iberia last from Eastern Europe and thus any possible contacts between the two populations occurred here later than elsewhere. The transition process took place in the earlier part of the Marine Isotope Stage 3 (∼60-27 cal ka BP) as repeated and profound climate changes challenged the population stability. To investigate how climate change and population interactions influenced the transition, we combine climate data with archaeological-site data to reconstruct the Human Existence Potential, a measure of the probability of human existence, for both the NEA and AMH populations in the Greenland Interstadial 11-10 (GI11-10) and Stadial 10-9/Heinrich event 4 (GS10-9/HE4) times. It is found that during GS10-9/HE4, large parts of the peninsula became unsuitable for NEA human existence and the NEA settlement areas contracted to isolated coastal hot spots. As a consequence, the NEA networks became highly unstable, triggering the final collapse of the population. The AMHs arrived in Iberia in GI10 but were confined to patches in the northern most strip of the peninsula. They were soon facing the much colder climate of GS10-9/HE4, which prevented their further expansion or even caused a contraction of their settlement areas. Thus, due to the constellation of climate change and the dispersal of the two populations into different regions of the peninsula, it is unlikely that the NEAs and AMHs coexisted in extensive areas and the AMHs had a significant influence on the demography of the NEAs. </p>

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Collinearity: a review of methods to deal with it and a simulation study evaluating their performance

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A long-term numerical solution for the insolation quantities of the Earth

                Bookmark

                Author and article information

                Journal
                Science Bulletin
                Science Bulletin
                Elsevier BV
                20959273
                June 2023
                June 2023
                : 68
                : 11
                : 1176-1186
                Article
                10.1016/j.scib.2023.04.025
                37202264
                09dddaf5-717d-49d5-bb58-e48288f41e27
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,220

                Cited by7

                Most referenced authors1,296