91
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the function of histone modifications across inducible genes in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and identification of enzymes responsible. We produced high-resolution comparative maps of the distribution and dynamics of H3K4me3, H3K36me3, H3K79me2 and H3K9ac across c- fos and c- jun upon gene induction in murine fibroblasts. In unstimulated cells, continuous turnover of H3K9 acetylation occurs on all K4-trimethylated histone H3 tails; distribution of both modifications coincides across promoter and 5′ part of the coding region. In contrast, K36- and K79-methylated H3 tails, which are not dynamically acetylated, are restricted to the coding regions of these genes. Upon stimulation, transcription-dependent increases in H3K4 and H3K36 trimethylation are seen across coding regions, peaking at 5′ and 3′ ends, respectively. Addressing molecular mechanisms involved, we find that Huntingtin-interacting protein HYPB/Setd2 is responsible for virtually all global and transcription-dependent H3K36 trimethylation, but not H3K36-mono- or dimethylation, in these cells. These studies reveal four distinct layers of histone modification across inducible mammalian genes and show that HYPB/Setd2 is responsible for H3K36 trimethylation throughout the mouse nucleus.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          A chromatin landmark and transcription initiation at most promoters in human cells.

          We describe the results of a genome-wide analysis of human cells that suggests that most protein-coding genes, including most genes thought to be transcriptionally inactive, experience transcription initiation. We found that nucleosomes with H3K4me3 and H3K9,14Ac modifications, together with RNA polymerase II, occupy the promoters of most protein-coding genes in human embryonic stem cells. Only a subset of these genes produce detectable full-length transcripts and are occupied by nucleosomes with H3K36me3 modifications, a hallmark of elongation. The other genes experience transcription initiation but show no evidence of elongation, suggesting that they are predominantly regulated at postinitiation steps. Genes encoding most developmental regulators fall into this group. Our results also identify a class of genes that are excluded from experiencing transcription initiation, at which mechanisms that prevent initiation must predominate. These observations extend to differentiated cells, suggesting that transcription initiation at most genes is a general phenomenon in human cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.

            Cells employ elaborate mechanisms to introduce structural and chemical variation into chromatin. Here, we focus on one such element of variation: methylation of lysine 4 in histone H3 (H3K4). We assess a growing body of literature, including treatment of how the mark is established, the patterns of methylation, and the functional consequences of this epigenetic signature. We discuss structural aspects of the H3K4 methyl recognition by the downstream effectors and propose a distinction between sequence-specific recruitment mechanisms and stabilization on chromatin through methyl-lysine recognition. Finally, we hypothesize how the unique properties of the polyvalent chromatin fiber and associated effectors may amplify small differences in methyl-lysine recognition, simultaneously allowing for a dynamic chromatin architecture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression.

              It is more evident now than ever that nucleosomes can transmit epigenetic information from one cell generation to the next. It has been demonstrated during the past decade that the posttranslational modifications of histone proteins within the chromosome impact chromatin structure, gene transcription, and epigenetic information. Multiple modifications decorate each histone tail within the nucleosome, including some amino acids that can be modified in several different ways. Covalent modifications of histone tails known thus far include acetylation, phosphorylation, sumoylation, ubiquitination, and methylation. A large body of experimental evidence compiled during the past several years has demonstrated the impact of histone acetylation on transcriptional control. Although histone modification by methylation and ubiquitination was discovered long ago, it was only recently that functional roles for these modifications in transcriptional regulation began to surface. Highlighted in this review are the recent biochemical, molecular, cellular, and physiological functions of histone methylation and ubiquitination involved in the regulation of gene expression as determined by a combination of enzymological, structural, and genetic methodologies.
                Bookmark

                Author and article information

                Journal
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                23 January 2008
                20 December 2007
                : 27
                : 2
                : 406-420
                Affiliations
                [1 ]simpleNuclear Signalling Laboratory, Department of Biochemistry, Oxford University , Oxford, UK
                Author notes
                [a ]Nuclear Signalling Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. Tel.: +44 01865 285 345; Fax: +44 01865 279 252; E-mail: louiscm@ 123456bioch.ox.ac.uk
                Article
                7601967
                10.1038/sj.emboj.7601967
                2168397
                18157086
                09ba9b58-5c5f-4d9d-9c43-c7fed58cc68e
                Copyright © 2008, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation or the creation of derivative works without specific permission.

                History
                : 03 September 2007
                : 03 December 2007
                Categories
                Article

                Molecular biology
                histone methyltransferases,histone modifications,chromatin,transcription elongation,hypb/setd2

                Comments

                Comment on this article