1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Different metazoan parasites, different transcriptomic responses, with new insights on parasitic castration by digenetic trematodes in the schistosome vector snail Biomphalaria glabrata

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gastropods of the genus Biomphalaria (Family Planorbidae) are exploited as vectors by Schistosoma mansoni, the most common causative agent of human intestinal schistosomiasis. Using improved genomic resources, overviews of how Biomphalaria responds to S. mansoni and other metazoan parasites can provide unique insights into the reproductive, immune, and other systems of invertebrate hosts, and their responses to parasite challenges.

          Results

          Using Illumina-based RNA-Seq, we compared the responses of iM line B. glabrata at 2, 8, and 40 days post-infection (dpi) to single infections with S. mansoni, Echinostoma paraensei (both digenetic trematodes) or Daubaylia potomaca (a nematode parasite of planorbid snails). Responses were compared to unexposed time-matched control snails. We observed: (1) each parasite provoked a distinctive response with a predominance of down-regulated snail genes at all time points following exposure to either trematode, and of up-regulated genes at 8 and especially 40dpi following nematode exposure; (2) At 2 and 8dpi with either trematode, several snail genes associated with gametogenesis (particularly spermatogenesis) were down-regulated. Regarding the phenomenon of trematode-mediated parasitic castration in molluscs, we define for the first time a complement of host genes that are targeted, as early as 2dpi when trematode larvae are still small; (3) Differential gene expression of snails with trematode infection at 40dpi, when snails were shedding cercariae, was unexpectedly modest and revealed down-regulation of genes involved in the production of egg mass proteins and peptide processing; and (4) surprisingly, D. potomaca provoked up-regulation at 40dpi of many of the reproduction-related snail genes noted to be down-regulated at 2 and 8dpi following trematode infection. Happening at a time when B. glabrata began to succumb to D. potomaca, we hypothesize this response represents an unexpected form of fecundity compensation. We also document expression patterns for other Biomphalaria gene families, including fibrinogen domain-containing proteins (FReDs), C-type lectins, G-protein coupled receptors, biomphalysins, and protease and protease inhibitors.

          Conclusions

          Our study is relevant in identifying several genes involved in reproduction that are targeted by parasites in the vector snail B. glabrata and that might be amenable to manipulation to minimize their ability to serve as vectors of schistosomes.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12864-024-10454-4.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STAR: ultrafast universal RNA-seq aligner.

            Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              KEGG: kyoto encyclopedia of genes and genomes.

              M Kanehisa (2000)
              KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
                Bookmark

                Author and article information

                Contributors
                lijun80@unm.edu
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                17 June 2024
                17 June 2024
                2024
                : 25
                : 608
                Affiliations
                GRID grid.266832.b, ISNI 0000 0001 2188 8502, Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, , University of New Mexico, ; Albuquerque, 87131 USA
                Article
                10454
                10.1186/s12864-024-10454-4
                11184841
                38886647
                09af3b3c-ae0b-4214-b353-99d1c2ed89be
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 19 February 2024
                : 24 May 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: RO1 AI170587
                Award ID: R37AI101438
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Genetics
                biomphalaria glabrata,schistosoma mansoni,echinostoma paraensei,daubaylia potomaca,transcriptomics,rna-seq,parasitic castration,fecundity compensation

                Comments

                Comment on this article