19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

      review-article
      * ,
      Oxidative Medicine and Cellular Longevity
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress-induced cataract: mechanism of action.

          This review examines the hypothesis that oxidative stress is an initiating factor for the development of maturity onset cataract and describes the events leading to lens opacification. Data are reviewed that indicate that extensive oxidation of lens protein and lipid is associated with human cataract found in older individuals whereas little oxidation (and only in membrane components) is found in control subjects of similar age. A significant proportion of lenses and aqueous humor taken from cataract patients have elevated H2O2 levels. Because H2O2, at concentrations found in cataract, can cause lens opacification and produces a pattern of oxidation similar to that found in cataract, it is concluded that H2O2 is the major oxidant involved in cataract formation. This viewpoint is further supported by experiments showing that cataract formation in organ culture caused by photochemically generated superoxide radical, H2O2, and hydroxyl radical is completely prevented by the addition of a GSH peroxidase mimic. The damage caused by oxidative stress does not appear to be reversible and there is an inverse relationship between the stress period and the time required for loss of transparency and degeneration of biochemical parameters such as ATP, GPD, nonprotein thiol, and hydration. After exposure to oxidative stress, the redox set point of the single layer of the lens epithelial cells (but not the remainder of the lens) quickly changes, going from a strongly reducing to an oxidizing environment. Almost concurrent with this change is extensive damage to DNA and membrane pump systems, followed by loss of epithelial cell viability and death by necrotic and apoptotic mechanisms. The data suggest that the epithelial cell layer is the initial site of attack by oxidative stress and that involvement of the lens fibers follows, leading to cortical cataract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence of oxidative stress in human corneal diseases.

            This study localized malondialdehyde (MDA, a toxic byproduct of lipid peroxidation), nitrotyrosine [NT, a cytotoxic byproduct of nitric oxide (NO)], and nitric oxide synthase isomers (NOS) in normal and diseased human corneas. Normal corneas (n=11) and those with clinical and histopathological diagnoses of keratoconus (n=26), bullous keratopathy (n=17), and Fuchs' endothelial dystrophy (n=12) were examined with antibodies specific for MDA, NT, eNOS (constitutive NOS), and iNOS (inducible NOS). Normal corneas showed little or no staining for MDA, NT, or iNOS, whereas eNOS was detected in the epithelium and endothelium. MDA was present in all disease groups, with each group displaying a distinct pattern of staining. NT was detected in all keratoconus and approximately one half of Fuchs' dystrophy corneas. iNOS and eNOS were evident in all the diseased corneas. Keratoconus corneas showed evidence of oxidative damage from cytotoxic byproducts generated by lipid peroxidation and the NO pathway. Bullous keratopathy corneas displayed byproducts of lipid peroxidation but not peroxynitrite (MDA but not NT). Conversely, Fuchs' dystrophy corneas displayed byproducts of peroxynitrite with little lipid peroxidation (NT > MDA). These data suggest that oxidative damage occurs within each group of diseased corneas. However, each disease exhibits a distinctive profile, with only keratoconus showing prominent staining for both nitrotyrosine and MDA. These results suggest that keratoconus corneas do not process reactive oxygen species in a normal manner, which may play a major role in the pathogenesis of this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress in keratoconus?

              The purpose of this study was to establish the alterations of oxidative stress-related markers in keratoconus (KC) corneas. A total of 6 healthy and 11 ectatic corneas (7 KC and 4 post-LASIK) were studied. Different oxidative stress-related markers were determined to assess their implication in the KC pathophysiology. Total antioxidant capacity and total nitrites present in the samples were assayed. Furthermore, lipid peroxidation products and the glutathione contents were determined, together with 4-hydroxynonenal (4-HNE) immunohistochemistry, to establish the relationship between KC and oxidative stress. The antioxidant capacity and glutathione content in KC corneas were decreased significantly when compared with healthy corneas. Moreover, the total nitrites and lipid peroxidation were significantly elevated in the corneas with KC when compared with the controls. There was a statistically significant difference in the amount of HNE-positive cells in KC corneas when compared with healthy corneas by immunohistochemistry. Post-LASIK ectatic corneas and KC corneas showed similar results. The increased levels of oxidative stress markers and the decreased antioxidant capacity and antioxidant defenses in KC corneas, as well as in the post-LASIK ectatic corneas, indicate that oxidative stress might be involved in the development of this disease and may provide new insights for its prevention and treatment in the future.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2015
                11 March 2015
                : 2015
                : 591530
                Affiliations
                Laboratory of Eye Histochemistry and Pharmacology, Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic
                Author notes

                Academic Editor: Ron Kohen

                Article
                10.1155/2015/591530
                4377462
                25861412
                097f3f05-6f1d-4876-86bb-26927617c4b2
                Copyright © 2015 C. Cejka and J. Cejkova.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 November 2014
                : 15 January 2015
                : 15 February 2015
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article