8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Involvement of IL-32 in activation-induced cell death in T cells.

      International Immunology
      Apoptosis, physiology, Cell Line, HeLa Cells, Humans, Interleukins, biosynthesis, genetics, Killer Cells, Natural, immunology, Lymphocyte Activation, T-Lymphocytes, Transcription, Genetic, Up-Regulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NK cell transcript 4 (NK4), now denoted as IL-32, was originally identified as a transcript whose expression was increased in activated NK cells. It has been very recently demonstrated that NK4 is secreted from several cells upon the stimulation of some inflammatory cytokines such as IL-18, IL-1beta, IFN-gamma and IL-12. Furthermore, NK4 induces production of tumor necrosis factor, macrophage inflammatory protein (MIP)-2 and IL-8 in monocytic cell lines, indicating that this factor would be involved in the inflammatory responses. Based on these findings, NK4 was renamed IL-32. However, the biological activities of IL-32 on other cell types remained undetermined. Furthermore, it was still argued whether IL-32 acts on cells from outside or inside the cells. In this article, we first report that expression of IL-32 was up-regulated in activated T cells and NK cells, and that IL-32beta was the predominantly expressed isoform in activated T cells. IL-32 was specifically expressed in T cells undergoing apoptosis and enforced expression of IL-32-induced apoptosis, whereas its down-regulation rescued the cells from apoptosis in HeLa cells. IL-32 existing in the supernatant would be derived from the cytoplasm of apoptotic cells. These results strongly indicated that IL-32 would be involved in activation-induced cell death in T cells, probably via its intracellular actions. Our present findings expand our understanding of the biological function of IL-32 and argue that IL-32 may act on cells, not only from the outside but also from the inside.

          Related collections

          Author and article information

          Comments

          Comment on this article