6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanomedicines for Renal Management: From Imaging to Treatment.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanomedicine has benefited from recent advances in chemistry and biomedical engineering to produce nanoscale materials as theranostic agents. Well-designed nanomaterials may present optimal biological properties, influencing circulation, retention, and excretion for imaging and treatment of various diseases. As the understanding of nanomedicine pharmacokinetics expands continuously, efficient renal clearance of nanomedicines can significantly increase the signal-to-background ratio for precision diagnosis and lower potential toxicity for improved treatment. Studies on nanomaterial-kidney interactions have led to many novel findings on the underlying principles of nanomaterial renal clearance, targeting, and accumulation. In return, the optimized nanomedicines confer significant benefits to the detection and treatment of kidney dysfunction.In this Account, we present an overview of recent progress in the development of nanomaterials for kidney theranostics, aiming to speed up translation and expand possible applications. We start by introducing biological structures of the kidney and their influence on renal targeting, retention, and clearance. Several key factors regarding renal accumulation and excretion, including nanomaterial types, sizes, and shapes, surface charges, and chemical modifications, are identified and discussed. Next, we highlight our recent efforts investigating kidney-interacting nanomaterials and introduce representative nanomedicines for imaging and treatment of kidney diseases. Multiple renal-clearable and renal-accumulating nanomedicines were devised for kidney function imaging. By employing renal-clearable nanomedicines, including gold nanoparticles, porphyrin polymers, DNA frameworks, and polyoxometalate clusters, we were able to noninvasively evaluate split renal function in healthy and diseased mice. Further engineering of renal-accumulating nanosystems has shifted attention from renal diagnosis to precision kidney protection. Many biocompatible nanomedicines, such as DNA origami, selenium-doped carbon quantum dots, melanin nanoparticles, and black phosphorus have all played essential roles in diminishing excessive reactive oxygen species for kidney treatment and protection. Finally, we discuss the challenges and perspectives of nanomaterials for renal care, their future clinical translation, and how they may affect the current landscape of clinical practices. We believe that this Account updates our current understanding of nanomaterial-kidney interactions for further design and control of nanomedicines for specific kidney diagnosis and treatment. This timely Account will generate broad interest in integrating nanotechnology and nanomaterial-biological interaction for state-of-the-art theranostics of renal diseases.

          Related collections

          Author and article information

          Journal
          Acc Chem Res
          Accounts of chemical research
          American Chemical Society (ACS)
          1520-4898
          0001-4842
          September 15 2020
          : 53
          : 9
          Affiliations
          [1 ] Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangzhou 518060, China.
          [2 ] Hubei Province Key Laboratory of Molecular Imaging, Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
          [3 ] Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.
          [4 ] Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.
          Article
          NIHMS1618157
          10.1021/acs.accounts.0c00323
          7494607
          32786331
          095990db-1874-40f1-a44f-9617f05fb878
          History

          Comments

          Comment on this article