28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys.

      Proceedings of the National Academy of Sciences of the United States of America
      Animals, Brain, embryology, growth & development, metabolism, Electroretinography, Fatty Acids, Essential, deficiency, Fatty Acids, Unsaturated, Female, Macaca mulatta, Membrane Lipids, Phosphatidylethanolamines, Pregnancy, Retina, Visual Acuity, Visual Cortex, Visual Pathways

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Docosahexaenoic acid [22:6 omega 3; 22:6-(4,7,10,13,16,19)] is the major polyunsaturated fatty acid in the photoreceptor membranes of the retina and in cerebral gray matter. It must be obtained either from the diet or by synthesis from other omega 3 fatty acids, chiefly alpha-linolenic acid (18:3 omega 3). We tested the effect of dietary omega 3 fatty acid deprivation during gestation and postnatal development upon the fatty acid composition of the retina and cerebral cortex and upon visual function. Rhesus monkeys (Macaca mulatta) were fed semipurified diets very low in 18:3 omega 3 throughout pregnancy, and their infants received a similar diet from birth. A control group of females and their infants received a semipurified diet supplying ample 18:3 omega 3. In near-term fetuses and newborn infants of the deficient group, the 22:6 omega 3 content of phosphatidylethanolamine was one-half of control values in the retina and one-fourth in cerebral cortex. By 22 months of age, the content of 22:6 omega 3 in these tissues approximately doubled in control monkeys, but it failed to increase in the deficient group. Low levels of 22:6 omega 3 in the deficient animals' tissues were accompanied by a compensatory increase in longer-chain omega 6 fatty acids, particularly 22:5 omega 6. Functionally, the deficient animals had subnormal visual acuity at 4-12 weeks of age and prolonged recovery time of the dark-adapted electroretinogram after a saturating flash. Abnormally low levels of 22:6 omega 3 may produce alterations in the biophysical properties of photoreceptor and neural membranes that may underlie these functional impairments. The results of this study suggest that dietary omega 3 fatty acids are retina and brain.

          Related collections

          Author and article information

          Comments

          Comment on this article