35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Artesunate Inhibits Growth of Sunitinib-Resistant Renal Cell Carcinoma Cells through Cell Cycle Arrest and Induction of Ferroptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Renal cell carcinoma (RCC) is the most common kidney malignancy. Due to development of therapy resistance, efficacy of conventional drugs such as sunitinib is limited. Artesunate (ART), a drug originating from Traditional Chinese Medicine, has exhibited anti-tumor effects in several non-urologic tumors. ART inhibited growth, reduced metastatic properties, and curtailed metabolism in sunitinib-sensitive and sunitinib–resistant RCC cells. In three of four tested cell lines, ART’s growth inhibitory effects were accompanied by cell cycle arrest and modulation of cell cycle regulating proteins. In a fourth cell line, KTCTL-26, ART evoked ferroptosis, an iron-dependent cell death, and exhibited stronger anti-tumor effects than in the other cell lines. The regulatory protein, p53, was only detectable in the KTCTL-26 cells, possibly making p53 a predictive marker of cancer that may respond better to ART. ART, therefore, may hold promise as an additive therapy option for selected patients with advanced or therapy-resistant RCC.

          Abstract

          Although innovative therapeutic concepts have led to better treatment of advanced renal cell carcinoma (RCC), efficacy is still limited due to the tumor developing resistance to applied drugs. Artesunate (ART) has demonstrated anti-tumor effects in different tumor entities. This study was designed to investigate the impact of ART (1–100 µM) on the sunitinib-resistant RCC cell lines, Caki-1, 786-O, KTCTL26, and A-498. Therapy-sensitive (parental) and untreated cells served as controls. ART’s impact on tumor cell growth, proliferation, clonogenic growth, apoptosis, necrosis, ferroptosis, and metabolic activity was evaluated. Cell cycle distribution, the expression of cell cycle regulating proteins, p53, and the occurrence of reactive oxygen species (ROS) were investigated. ART significantly increased cytotoxicity and inhibited proliferation and clonogenic growth in both parental and sunitinib-resistant RCC cells. In Caki-1, 786-O, and A-498 cell lines growth inhibition was associated with G0/G1 phase arrest and distinct modulation of cell cycle regulating proteins. KTCTL-26 cells were mainly affected by ART through ROS generation, ferroptosis, and decreased metabolism. p53 exclusively appeared in the KTCTL-26 cells, indicating that p53 might be predictive for ART-dependent ferroptosis. Thus, ART may hold promise for treating selected patients with advanced and even therapy-resistant RCC.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of ferroptotic cancer cell death by GPX4.

          Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ferroptosis: past, present and future

            Ferroptosis is a new type of cell death that was discovered in recent years and is usually accompanied by a large amount of iron accumulation and lipid peroxidation during the cell death process; the occurrence of ferroptosis is iron-dependent. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through different pathways, resulting in a decrease in antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. Recent studies have shown that ferroptosis is closely related to the pathophysiological processes of many diseases, such as tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury, and blood diseases. How to intervene in the occurrence and development of related diseases by regulating cell ferroptosis has become a hotspot and focus of etiological research and treatment, but the functional changes and specific molecular mechanisms of ferroptosis still need to be further explored. This paper systematically summarizes the latest progress in ferroptosis research, with a focus on providing references for further understanding of its pathogenesis and for proposing new targets for the treatment of related diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroptosis as a p53-mediated activity during tumour suppression.

              Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p53(3KR), an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p53(3KR)-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                27 October 2020
                November 2020
                : 12
                : 11
                : 3150
                Affiliations
                [1 ]Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; sascha.markowitsch@ 123456unimedizin-mainz.de (S.D.M.); pschupp@ 123456students.uni-mainz.de (P.S.); jlauckne@ 123456students.uni-mainz.de (J.L.); olesya.vakhrusheva@ 123456unimedizin-mainz.de (O.V.); kimberlysue.slade@ 123456unimedizin-mainz.de (K.S.S.); rene.mager@ 123456unimedizin-mainz.de (R.M.); axel.haferkamp@ 123456unimedizin-mainz.de (A.H.)
                [2 ]Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany; efferth@ 123456uni-mainz.de
                Author notes
                [* ]Correspondence: eva.juengel@ 123456unimedizin-mainz.de ; Tel.: +49-631-175-433; Fax: +49-6131-174-410
                Article
                cancers-12-03150
                10.3390/cancers12113150
                7692972
                33121039
                09338867-d4b9-47a9-8837-0d6f9b499879
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 September 2020
                : 24 October 2020
                Categories
                Article

                renal cell carcinoma (rcc),sunitib resistance,artesunate (art),traditional chinese medicine (tcm),growth inhibition,ferroptosis,reactive oxygen species (ros)

                Comments

                Comment on this article